Search results for: wave travel time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19302

Search results for: wave travel time

18732 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care

Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris

Abstract:

Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventions

Keywords: carbon footprint, environmental impact, primary care, sustainable healthcare

Procedia PDF Downloads 51
18731 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach

Authors: Mustapha Sadouk

Abstract:

This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.

Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material

Procedia PDF Downloads 69
18730 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach

Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar

Abstract:

Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.

Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map

Procedia PDF Downloads 513
18729 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: the light–effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons-optical phonon scattering

Procedia PDF Downloads 327
18728 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 633
18727 Finding the Optimal Meeting Point Based on Travel Plans in Road Networks

Authors: Mohammad H. Ahmadi, Vahid Haghighatdoost

Abstract:

Given a set of source locations for a group of friends, and a set of trip plans for each group member as a sequence of Categories-of-Interests (COIs) (e.g., restaurant), and finally a specific COI as a common destination that all group members will gather together, in Meeting Point Based on Trip Plans (MPTPs) queries our goal is to find a Point-of-Interest (POI) from different COIs, such that the aggregate travel distance for the group is minimized. In this work, we considered two cases for aggregate function as Sum and Max. For solving this query, we propose an efficient pruning technique for shrinking the search space. Our approach contains three steps. In the first step, it prunes the search space around the source locations. In the second step, it prunes the search space around the centroid of source locations. Finally, we compute the intersection of all pruned areas as the final refined search space. We prove that the POIs beyond the refined area cannot be part of optimal answer set. The paper also covers an extensive performance study of the proposed technique.

Keywords: meeting point, trip plans, road networks, spatial databases

Procedia PDF Downloads 177
18726 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations

Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut

Abstract:

The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.

Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction

Procedia PDF Downloads 55
18725 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 343
18724 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.

Keywords: urban highway, accident, tunnel, mathematical model

Procedia PDF Downloads 466
18723 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis

Authors: Sahil Kapahi

Abstract:

A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.

Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE

Procedia PDF Downloads 237
18722 A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode

Authors: Usman Nasir, Minxiao Han, S. M. R. Kazmi

Abstract:

Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode.

Keywords: three phase inverters, IFOC, THD, sine wave PWM (SPWM)

Procedia PDF Downloads 416
18721 Application of Hydrological Engineering Centre – River Analysis System (HEC-RAS) to Estuarine Hydraulics

Authors: Julia Zimmerman, Gaurav Savant

Abstract:

This study aims to evaluate the efficacy of the U.S. Army Corp of Engineers’ River Analysis System (HEC-RAS) application to modeling the hydraulics of estuaries. HEC-RAS has been broadly used for a variety of riverine applications. However, it has not been widely applied to the study of circulation in estuaries. This report details the model development and validation of a combined 1D/2D unsteady flow hydraulic model using HEC-RAS for estuaries and they are associated with tidally influenced rivers. Two estuaries, Galveston Bay and Delaware Bay, were used as case studies. Galveston Bay, a bar-built, vertically mixed estuary, was modeled for the 2005 calendar year. Delaware Bay, a drowned river valley estuary, was modeled from October 22, 2019, to November 5, 2019. Water surface elevation was used to validate both models by comparing simulation results to NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) gauge data. Simulations were run using the Diffusion Wave Equations (DW), the Shallow Water Equations, Eulerian-Lagrangian Method (SWE-ELM), and the Shallow Water Equations Eulerian Method (SWE-EM) and compared for both accuracy and computational resources required. In general, the Diffusion Wave Equations results were found to be comparable to the two Shallow Water equations sets while requiring less computational power. The 1D/2D combined approach was valid for study areas within the 2D flow area, with the 1D flow serving mainly as an inflow boundary condition. Within the Delaware Bay estuary, the HEC-RAS DW model ran in 22 minutes and had an average R² value of 0.94 within the 2-D mesh. The Galveston Bay HEC-RAS DW ran in 6 hours and 47 minutes and had an average R² value of 0.83 within the 2-D mesh. The longer run time and lower R² for Galveston Bay can be attributed to the increased length of the time frame modeled and the greater complexity of the estuarine system. The models did not accurately capture tidal effects within the 1D flow area.

Keywords: Delaware bay, estuarine hydraulics, Galveston bay, HEC-RAS, one-dimensional modeling, two-dimensional modeling

Procedia PDF Downloads 193
18720 The Impact of Rapid Urbanisation on Public Transport Systems in the Gauteng Region of South Africa

Authors: J. Chakwizira, P. Bikam, T. A. Adeboyejo

Abstract:

This paper seeks to illustrate the impact of rapid urbanization (in terms of both increase in people and vehicles) in the Gauteng region (which includes Johannesburg, Pretoria and Ekurhuleni). The impact that existing transport systems and options place on the capacity of residents from low income areas to travel and conduct various socio-economic activities is discussed. The findings are drawn from a 2013 analysis of a random transport household survey of 1550 households carried out in Gauteng province. 91.4% of the study respondents had access to public transport, while 8.6% had no access to public transport. Of the 91.4% who used public transport, the main reason used to explain this state of affairs was that it was affordable (54.3%), convenient (15.9%), Accessible (11.9%), lack of alternatives (6.4%) and reliable at 4.1%. Recommendations advanced revolve around the need to reverse land use and transportation effects of apartheid planning, growing and developing a sustainable critical mass of public transport interventions supported by appropriate transport systems that are environmentally sustainable through proper governance. 38.5% of the respondents indicated that developing compact, smart and integrated urban land spaces was key to reducing travel challenges in the study area. 23.4% indicated that the introduction and upgrading of BRT buses to cover all areas in the study area was a step in the right direction because it has great potential in shifting travel patterns to favor public modes of transport. 15.1% indicated that all open spaces should be developed so that fragmentation of land uses can be addressed. This would help to fight disconnected and fragmented space and trip making challenges in Gauteng. 13.4% indicated that improving the metro rail services was critical since this is a mass mover of commuters. 9.6% of the respondents highlighted that the bus subsidy policy has to be retained in the short to medium term since the spatial mismatches and challenges created by apartheid are yet to be fully reversed.

Keywords: urbanisation, population, public, transport systems, Gauteng

Procedia PDF Downloads 279
18719 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 242
18718 Migration as a Trigger Causing Change to the Levant Literary Modernism

Authors: Aathira Peedikaparambil Somasundaran

Abstract:

The beginning of the 20th century marked the perios when a new generation of Lebanese radicals sowed the seeds for the second phase of Levant literary modernism, situated in the Levant. Beirut, during this era popularly fit every radical writer’s criterion owing to its weakened censorship and political control, despite the absence of a protective womb for the development of literary modernism, caused by the natively prevalent political unsettlement. The third stage of literary modernization, in which scholars used Western-inspired critical techniques to better understand their own cultures, coincides with the time period examined in this paper, which involved the international-inspired critical analysis of native cultural stimulants, which raised questions among Arab freethinking intellectuals. Locals who ventured outside recognised the difference between the West's progress and their own nations' stagnation. The awareness of such ‘gap of success’ aroused an ambition from journalists, authors, and proletarian revolutionaries who had studied in Europe, and finally developed enlightened ideas. Some Middle Eastern authors and artists only adopted current social and political frameworks after discovering western modernity. After learning about the upheavals that were happening in the West, these thinkers aspired to bring about equally broad drastic developments in their own country's social, political, and cultural milieu. These occurrences illustrate the increased power of migration to alter the cultural and literary scene in the Levant. The paper intends to discuss the different effects of migration that contributed to Levant literary modernism. The exploration of these factors as causes begins with addressing the politically influenced activism, that has always been a relevant part of Beirut, and then diving into the psychological effects of migration in the individuals of the society, which might have induced an accommodability to alien thoughts and ideas over time, as a coping mechanism. Nature or environmental stimuli, a common trigger for any creative output, often having the highest influence during travel will be identified and analysed to inspect the extent of its impact on the exchange of ideas that resulted in Levant modernism. The efficiency of both the stimulating component of travel and the diaspora of the indigenous, a by-product of travel in catalysing modernism in the Levant has to be proven in order to understand how migration indirectly affected the transmission and adoption of ideas in Levant literature. The paper will revisit the events revolving around these key players and platforms like Shir, to understand how the Lebanese literature, tied down in poetry drastically mutated under the leadership of Adonis, Yusuf et Khal, and other pioneers of Levant literary modernism. The conclision will identify the triggers that helped authors overcome personal and geographical barriers to unite the West and the Levant, and investigate the extent to which the bi-directional migration prompted a transformation in the local poetry. Consequently, the paper aims to shed light into the unique factor that provoked the shift in the literary scene of Twentieth century in the Middle East.

Keywords: literature, modernism, Middle East, levant, Beirut

Procedia PDF Downloads 71
18717 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieha

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: polynomial constitutive equation, solitary, stress solitary waves, nonlinear constitutive law

Procedia PDF Downloads 486
18716 Investigating Jacket-Type Offshore Structures Failure Probability by Applying the Reliability Analyses Methods

Authors: Majid Samiee Zonoozian

Abstract:

For such important constructions as jacket type platforms, scrupulous attention in analysis, design and calculation processes is needed. The reliability assessment method has been established into an extensively used method to behavior safety calculation of jacket platforms. In the present study, a methodology for the reliability calculation of an offshore jacket platform in contradiction of the extreme wave loading state is available. Therefore, sensitivity analyses are applied to acquire the nonlinear response of jacket-type platforms against extreme waves. The jacket structure is modeled by applying a nonlinear finite-element model with regards to the tubular members' behave. The probability of a member’s failure under extreme wave loading is figured by a finite-element reliability code. The FORM and SORM approaches are applied for the calculation of safety directories and reliability indexes have been detected. A case study for a fixed jacket-type structure positioned in the Persian Gulf is studied by means of the planned method. Furthermore, to define the failure standards, equations suggested by the 21st version of the API RP 2A-WSD for The jacket-type structures’ tubular members designing by applying the mixed axial bending and axial pressure. Consequently, the effect of wave Loades in the reliability index was considered.

Keywords: Jacket-Type structure, reliability, failure probability, tubular members

Procedia PDF Downloads 164
18715 Lennox-gastaut Syndrome Associated with Dysgenesis of Corpus Callosum

Authors: A. Bruce Janati, Muhammad Umair Khan, Naif Alghassab, Ibrahim Alzeir, Assem Mahmoud, M. Sammour

Abstract:

Rationale: Lennox-Gastaut syndrome(LGS) is an electro-clinical syndrome composed of the triad of mental retardation, multiple seizure types, and the characteristic generalized slow spike-wave complexes in the EEG. In this article, we report on two patients with LGS whose brain MRI showed dysgenesis of corpus callosum(CC). We review the literature and stress the role of CC in the genesis of secondary bilateral synchrony(SBS). Method: This was a clinical study conducted at King Khalid Hospital. Results: The EEG was consistent with LGS in patient 1 and unilateral slow spike-wave complexes in patient 2. The MRI showed hypoplasia of the splenium of CC in patient 1, and global hypoplasia of CC combined with Joubert syndrome in patient 2. Conclusion: Based on the data, we proffer the following hypotheses: 1-Hypoplasia of CC interferes with functional integrity of this structure. 2-The genu of CC plays a pivotal role in the genesis of secondary bilateral synchrony. 3-Electrodecremental seizures in LGS emanate from pacemakers generated in the brain stem, in particular the mesencephalon projecting abnormal signals to the cortex via thalamic nuclei. 4-Unilateral slow spike-wave complexes in the context of mental retardation and multiple seizure types may represent a variant of LGS, justifying neuroimaging studies.

Keywords: EEG, Lennox-Gastaut syndrome, corpus callosum , MRI

Procedia PDF Downloads 437
18714 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 487
18713 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 164
18712 Pulsed-Wave Doppler Ultrasonographic Assessment of the Maximum Blood Velocity in Common Carotid Artery in Horses after Administration of Ketamine and Acepromazine

Authors: Saman Ahani, Aboozar Dehghan, Roham Vali, Hamid Salehian, Amin Ebrahimi

Abstract:

Pulsed-wave (PW) doppler ultrasonography is a non-invasive, relatively accurate imaging technique that can measure blood speed. The imaging could be obtained via the common carotid artery, as one of the main vessels supplying the blood of vital organs. In horses, factors such as susceptibility to depression of the cardiovascular system and their large muscular mass have rendered them vulnerable to changes in blood speed. One of the most important factors causing blood velocity changes is the administration of anesthetic drugs, including Ketamine and Acepromazine. Thus, in this study, the Pulsed-wave doppler technique was performed to assess the highest blood velocity in the common carotid artery following administration of Ketamine and Acepromazine. Six male and six female healthy Kurdish horses weighing 351 ± 46 kg (mean ± SD) and aged 9.2 ± 1.7 years (mean ± SD) were housed under animal welfare guidelines. After fasting for six hours, the normal blood flow velocity in the common carotid artery was measured using a Pulsed-wave doppler ultrasonography machine (BK Medical, Denmark), and a high-frequency linear transducer (12 MHz) without applying any sedative drugs as a control group. The same procedure was repeated after each individual received the following medications: 1.1, 2.2 mg/kg Ketamine (Pfizer, USA), and 0.5, 1 mg/kg Acepromizine (RACEHORSE MEDS, Ukraine), with an interval of 21 days between the administration of each dose and/or drug. The ultrasonographic study was done five (T5) and fifteen (T15) minutes after injecting each dose intravenously. Lastly, the statistical analysis was performed using SPSS software version 22 for Windows and a P value less than 0.05 was considered to be statistically significant. Five minutes after administration of Ketamine (1.1, 2.2 mg/kg) in both male and female horses, the blood velocity decreased to 38.44, 34.53 cm/s in males, and 39.06, 34.10 cm/s in females in comparison to the control group (39.59 and 40.39 cm/s in males and females respectively) while administration of 0.5 mg/kg Acepromazine led to a significant rise (73.15 and 55.80 cm/s in males and females respectively) (p<0.05). It means that the most drastic change in blood velocity, regardless of gender, refers to the latter dose/drug. In both medications and both genders, the increase in doses led to a decrease in blood velocity compared to the lower dose of the same drug. In all experiments in this study, the blood velocity approached its normal value at T15. In another study comparing the blood velocity changes affected by Ketamine and Acepromazine through femoral arteries, the most drastic changes were attributed to Ketamine; however, in this experiment, the maximum blood velocity was observed following administration of Acepromazine via the common carotid artery. Therefore, further experiments using the same medications are suggested using Pulsed-wave doppler measuring the blood velocity changes in both femoral and common carotid arteries simultaneously.

Keywords: Acepromazine, common carotid artery, horse, ketamine, pulsed-wave doppler ultrasonography

Procedia PDF Downloads 116
18711 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 289
18710 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 195
18709 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-Ping, Zhu Jian-Xun, Liu Sheng-Nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion, time domain, allocation of thrust

Procedia PDF Downloads 452
18708 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 115
18707 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.

Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal

Procedia PDF Downloads 536
18706 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 143
18705 Characterization of Himalayan Phyllite with Reference to Foliation Planes

Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar

Abstract:

Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.

Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region

Procedia PDF Downloads 51
18704 Emptiness Downlink and Uplink Proposal Using Space-Time Equation Interpretation

Authors: Preecha Yupapin And Somnath

Abstract:

From the emptiness, the vibration induces the fractal, and the strings are formed. From which the first elementary particle groups, known as quarks, were established. The neutrino and electron are created by them. More elementary particles and life are formed by organic and inorganic substances. The universe is constructed, from which the multi-universe has formed in the same way. universe assumes that the intense energy has escaped from the singularity cone from the multi-universes. Initially, the single mass energy is confined, from which it is disturbed by the space-time distortion. It splits into the entangled pair, where the circular motion is established. It will consider one side of the entangled pair, where the fusion energy of the strong coupling force has formed. The growth of the fusion energy has the quantum physic phenomena, where the moving of the particle along the circumference with a speed faster than light. It introduces the wave-particle duality aspect, which will be saturated at the stopping point. It will be re-run again and again without limitation, which can say that the universe has been created and expanded. The Bose-Einstein condensate (BEC) is released through the singularity by the wormhole, which will be condensed to become a mass associated with the Sun's size. It will circulate(orbit) along the Sun. the consideration of the uncertainty principle is applied, from which the breath control is followed by the uncertainty condition ∆p∆x=∆E∆t~ℏ. The flowing in-out air into a body via a nose has applied momentum and energy control respecting the movement and time, in which the target is that the distortion of space-time will have vanished. Finally, the body is clean which can go to the next procedure, where the mind can escape from the body by the speed of light. However, the borderline between contemplation to being an Arahant is a vacuum, which will be explained.

Keywords: space-time, relativity, enlightenment, emptiness

Procedia PDF Downloads 59
18703 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators

Authors: Vinita Choudhary

Abstract:

The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.

Keywords: bragg reflectors, SMR, insertion loss, quality factor

Procedia PDF Downloads 79