Search results for: task cycles
2319 Surgical School Project: Implementation Educational Plan for Adolescents Awaiting Bariatric Surgery
Authors: Brooke Sweeney, David White, Felix Amparano, Nick A. Clark, Amy R. Beck, Mathew Lindquist, Lora Edwards, Julie Vandal, Jennifer Lisondra, Katie Cox, Renee Arensberg, Allen Cummins, Jazmine Cedeno, Jason D. Fraser, Kelsey Dean, Helena H. Laroche, Cristina Fernandez
Abstract:
Background: National organizations call for standardized pre-surgical requirements and education to optimize postoperative outcomes. Since 2017 our surgery program has used defined protocols and educational curricula pre- and post-surgery. In response to patient outcomes, our educational content was refined to include quizzes to assess patient knowledge and surgical preparedness. We aim to optimize adolescent pre-bariatric surgery preparedness by improving overall aggregate pre-surgical assessment performance from 68% to 80% within 12 months. Methods: A multidisciplinary improvement team was developed within the weight management clinic (WMC) of our tertiary care, free-standing children’s hospital. A manual has been utilized since 2017, with limitations in consistent delivery and patient uptake of information. The curriculum has been improved to include quizzes administered during WMC visits prior to bariatric surgery. The initial outcome measure is the pre-surgical quiz score of adolescents preparing for bariatric surgery. Process measure was the number of questions answered correctly to test the questions. Baseline performance was determined by a patient assessment survey of pre-surgical preparedness at patient visits. Plan-Do-Study-Act cycles (PDSA) included: 1) creation and implementation of a refined curriculum, 2) development of 5 new quizzes based upon learning objectives, and 3) improving provider-lead teaching and quiz administration within clinic workflow. Run charts assessed impact over time. Results: A total of 346 quiz questions were administered to 34 adolescents. The outcome measure improved from a baseline mean of 68% to 86% following PDSA 2 cycles, and it was sustained. Conclusion/Implication: Patient/family comprehension of surgical preparedness improved with standardized education via team member-led teaching and assessment using quizzes during pre-surgical clinic visits. The next steps include launching redesigned teaching materials with modules correlated to quizzes and assessment of comprehension and outcomes post-surgically.Keywords: bariatric surgery, adolescent, clinic, pre-bariatric training
Procedia PDF Downloads 652318 Limits of the Dot Counting Test: A Culturally Responsive Approach to Neuropsychological Evaluations and Treatment
Authors: Erin Curtis, Avraham Schwiger
Abstract:
Neuropsychological testing and evaluation is a crucial step in providing patients with effective diagnoses and treatment while in clinical care. The variety of batteries used in these evaluations can help clinicians better understand the nuanced declivities in a patient’s cognitive, behavioral, or emotional functioning, consequently equipping clinicians with the insights to make intentional choices about a patient’s care. Despite the knowledge these batteries can yield, some aspects of neuropsychological testing remain largely inaccessible to certain patient groups as a result of fundamental cultural, educational, or social differences. One such battery includes the Dot Counting Test (DCT), during which patients are required to count a series of dots on a page as rapidly and accurately as possible. As the battery progresses, the dots appear in clusters that are designed to be easily multiplied. This task evaluates a patient’s cognitive functioning, attention, and level of effort exerted on the evaluation as a whole. However, there is evidence to suggest that certain social groups, particularly Latinx groups, may perform worse on this task as a result of cultural or educational differences, not reduced cognitive functioning or effort. As such, this battery fails to account for baseline differences among patient groups, thus creating questions surrounding the accuracy, generalizability, and value of its results. Accessibility and cultural sensitivity are critical considerations in the testing and treatment of marginalized groups, yet have been largely ignored in the literature and in clinical settings to date. Implications and improvements to applications are discussed.Keywords: culture, latino, neuropsychological assessment, neuropsychology, accessibility
Procedia PDF Downloads 1132317 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method
Authors: Arwa Alzughaibi
Abstract:
Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization
Procedia PDF Downloads 2572316 The Residual Efficacy of Etofenprox WP on Different Surfaces for Malaria Control in the Brazilian Legal Amazon
Authors: Ana Paula S. A. Correa, Allan K. R. Galardo, Luana A. Lima, Talita F. Sobral, Josiane N. Muller, Jessica F. S. Barroso, Nercy V. R. Furtado, Ednaldo C. Rêgo., Jose B. P. Lima
Abstract:
Malaria is a public health problem in the Brazilian Legal Amazon. Among the integrated approaches for anopheline control, the Indoor Residual Spraying (IRS) remains one of the main tools in the basic strategy applied in the Amazonian States, where the National Malaria Control Program currently uses one of the insecticides from the pyrethroid class, the Etofenprox WP. Understanding the residual efficacy of insecticides on different surfaces is essential to determine the spray cycles, in order to maintain a rational use and to avoid product waste. The aim of this study was to evaluate the residual efficacy of Etofenprox - VECTRON ® 20 WP on surfaces of Unplastered Cement (UC) and Unpainted Wood (UW) on panels, in field, and in semi-field evaluation of Brazil’s Amapa State. The evaluation criteria used was the cone bioassay test, following the World Health Organization (WHO) recommended method, using plastic cones and female mosquitos of Anopheles sp. The tests were carried out in laboratory panels, semi-field evaluation in a “test house” built in the Macapa municipality, and in the field in 20 houses, being ten houses per surface type (UC and UW), in an endemic malaria area in Mazagão’s municipality. The residual efficacy was measured from March to September 2017, starting one day after the spraying, repeated monthly for a period of six months. The UW surface presented higher residual efficacy than the UC. In fact, the UW presented a residual efficacy of the insecticide throughout the period of this study with a mortality rate above 80% in the panels (= 95%), in the "test house" (= 86%) and in field houses ( = 87%). On the UC surface it was observed a mortality decreased in all the tests performed, with a mortality rate of 45, 47 and 29% on panels, semi-field and in field, respectively; however, the residual efficacy ≥ 80% only occurred in the first evaluation after the 24-hour spraying bioassay in the "test house". Thus, only the UW surface meets the specifications of the World Health Organization Pesticide Evaluation Scheme (WHOPES) regarding the duration of effective action (three to six months). To sum up, the insecticide residual efficacy presented variability on the different surfaces where it was sprayed. Although the IRS with Etofenprox WP was efficient on UW surfaces, and it can be used in spraying cycles at 4-month intervals, it is important to consider the diversity of houses in the Brazilian Legal Amazon, in order to implement alternatives for vector control, including the evaluation of new products or different formulations types for insecticides.Keywords: Anopheles, vector control, insecticide, bioassay
Procedia PDF Downloads 1652315 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1342314 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 132313 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 3452312 Inducing Flow Experience in Mobile Learning: An Experiment Using a Spanish Learning Mobile Application
Authors: S. Jonsson, D. Millard, C. Bokhove
Abstract:
Smartphones are ubiquitous and frequently used as learning tools, which makes the design of educational apps an important area of research. A key issue is designing apps to encourage engagement while maintaining a focus on the educational aspects of the app. Flow experience is a promising method for addressing this issue, which refers to a mental state of cognitive absorption and positive emotion. Flow experience has been shown to be associated with positive emotion and increased learning performance. Studies have shown that immediate feedback is an antecedent to Flow. This experiment investigates the effect of immediate feedback on Flow experience. An app teaching Spanish phrases was developed, and 30 participants completed both a 10min session with immediate feedback and a 10min session with delayed feedback. The app contained a task where the user assembles Spanish phrases by pressing bricks with Spanish words. Immediate feedback was implemented by incorrect bricks recoiling, while correct brick moved to form part of the finished phrase. In the delayed feedback condition, the user did not know if the bricks they pressed were correct until the phrase was complete. The level of Flow experienced by the participants was measured after each session using the Flow Short Scale. The results showed that higher levels of Flow were experienced in the immediate feedback session. It was also found that 14 of the participants indicated that the demands of the task were ‘just right’ in the immediate feedback session, while only one did in the delayed feedback session. These results have implications for how to design educational technology and opens up questions for how Flow experience can be used to increase performance and engagement.Keywords: feedback timing, flow experience, L2 language learning, mobile learning
Procedia PDF Downloads 1332311 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia
Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos
Abstract:
Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.Keywords: logging, growth model, cutting cycle, minimum logging diameter
Procedia PDF Downloads 882310 Exploring Alignability Effects and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies
Authors: Rebecca Hafner, David Elmes, Daniel Read
Abstract:
The current research applies decision-making theory to the problem of increasing uptake of energy efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. We apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. In two studies we present participants with a choice between similar (boiler vs. boiler) vs. dissimilar (boiler vs. heat pump) technologies, described by a list of alignable and non-alignable attributes. In study One there is a preference for alignability when options are similar; an effect mediated by an increased tendency to infer missing information is the same. No effects of alignability on preference are found when options differ. One explanation for this split-shift in attentional focus is a change in construal levels potentially induced by the added consideration of environmental concern. Study two was designed to explore the interplay between alignability and construal level in greater detail. We manipulated construal level via a thought prime task prior to taking part in the same heating systems choice task, and find that there is a general preference for non-alignability, regardless of option type. We draw theoretical and applied implications for the type of information structure best suited for the promotion of energy efficient technologies.Keywords: alignability effects, decision making, energy-efficient technologies, sustainable behaviour change
Procedia PDF Downloads 3132309 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene
Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance
Procedia PDF Downloads 1102308 The Link Between Collaboration Interactions and Team Creativity Among Nursing Student Teams in Taiwan: A Moderated Mediation Model
Authors: Hsing Yuan Liu
Abstract:
Background: Considerable theoretical and empirical work has identified a relationship between collaboration interactions and creativity in an organizational context. The mechanisms underlying this link, however, are not well understood in healthcare education. Objectives: The aims of this study were to explore the impact of collaboration interactions on team creativity and its underlying mechanism and to verify a moderated mediation model. Design, setting, and participants: This study utilized a cross-sectional, quantitative, descriptive design. The survey data were collected from 177 nursing students who enrolled in 18-week capstone courses of small interdisciplinary groups collaborating to design healthcare products in Taiwan during 2018 and 2019. Methods: Questionnaires assessed the nursing students' perceptions about their teams' swift trust (of cognition- and affect-based), conflicts (of task, process, and relationship), interaction behaviors (constructive controversy, helping behaviors, and spontaneous communication), and creativity. This study used descriptive statistics to compare demographics, swift trust scores, conflict scores, interaction behavior scores, and creativity scores for interdisciplinary teams. Data were analyzed using Pearson’s correlation coefficient and simple and hierarchical multiple regression models. Results: Pearson’s correlation analysis showed the cognition-based team swift trust was positively correlated with team creativity. The mediation model indicated constructive controversy fully mediated the effect of cognition-based team swift trust on student teams’ creativity. The moderated mediation model indicated that task conflict negatively moderates the mediating effect of the constructive controversy on the link between cognition-based team swift trust and team creativity. Conclusion: Our findings suggest nursing student teams’ interaction behaviors and task conflict are crucial mediating and moderated mediation variables on the relationship between collaboration interactions and team creativity, respectively. The empirical data confirms the validity of our proposed moderated mediation models of team creativity. Therefore, this study's validated moderated mediation model could provide guidance for nursing educators to improve collaboration interaction outcomes and creativity on nursing student teams.Keywords: team swift trust, team conflict, team interaction behavior, moderated mediating effects, interdisciplinary education, nursing students
Procedia PDF Downloads 1872307 A Resource-Based Perspective on Job Crafting Consequences: An Empirical Study from China
Authors: Eko Liao, Cheryl Zhang
Abstract:
Employee job crafting refers to employee’s proactive behaviors of making customized changes to their jobs on cognitive, relationship, and task levels. Previous studies have investigated different situations triggering employee’s job crafting. However, much less is known about what would be the consequences for both employee themselves and their work groups. Guided by conservation of resources theory (COR), this study investigates how employees job crafting increases their objective task performance and promotive voice behaviors at work. It is argued that employee would gain more resources when they actively craft their job tasks, which in turn increase their job performance and encourage them to have more constructive speak-up behaviors. Specifically, employee’s psychological resources (i.e., job engagement) and relational resources (i.e., leader-member relationships) would be enhanced from effective crafting behaviors, because employees are more likely to regard their job tasks as meaningful, and their leaders would be more likely to notice and recognize their dedication at work when employees craft their job frequently. To test this research model, around 400 employees from various Chinese organizations from mainland China joins the two-wave data collection stage. Employee’s job crafting behaviors in three aspects are measured at time 1. Perception of resource gain (job engagement and leader-member exchange), voice, and job performance are measured at time 2. The research model is generally supported. This study contributes to the job crafting literature by broadening the theoretical lens to a resource-based perspective. It also has practical implications that organizations should pay more attention to employee crafting behaviors because they are closely related to employees in-role performance and constructive voice behaviors.Keywords: job crafting, resource-based perspective, voice, job performance
Procedia PDF Downloads 1682306 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 3412305 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 1582304 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 232303 21st Century Computer Technology for the Training of Early Childhood Teachers: A Study of Second-Year Education Students Challenged with Building a Kindergarten Website
Authors: Yonit Nissim, Eyal Weissblueth
Abstract:
This research is the continuation of a process that began in 2010 with the goal of redesigning the training program for future early childhood teachers at the Ohalo College, to integrate technology and provide 21st-century skills. The article focuses on a study of the processes involved in developing a special educational unit which challenged students with the task of designing, planning and building an internet site for kindergartens. This project was part of their second-year studies in the early childhood track of an interdisciplinary course entitled 'Educating for the Future.' The goal: enabling students to gain experience in developing an internet site specifically for kindergartens, and gain familiarity with Google platforms, the acquisition and use of innovative skills and the integration of technology in pedagogy. Research questions examined how students handled the task of building an internet site. The study explored whether the guided process of building a site helped them develop proficiency in creativity, teamwork, evaluation and learning appropriate to the 21st century. The research tool was a questionnaire constructed by the researchers and distributed online to the students. Answers were collected from 50-course participants. Analysis of the participants’ responses showed that, along with the significant experience and benefits that students gained from building a website for kindergarten, ambivalence was shown toward the use of new, unfamiliar and complex technology. This attitude was characterized by unease and initial emotional distress triggered by the departure from routine training to an island of uncertainty. A gradual change took place toward the adoption of innovation with the help of empathy, training, and guidance from the instructors, leading to the students’ success in carrying out the task. Initial success led to further successes, resulting in a quality product and a feeling of personal competency among the students. A clear and extreme emotional shift was observed on the spectrum from a sense of difficulty and dissatisfaction to feelings of satisfaction, joy, competency and cognitive understanding of the importance of facing a challenge and succeeding. The findings of this study can contribute to increased understanding of the complex training process of future kindergarten teachers, coping with a changing world, and pedagogy that is supported by technology.Keywords: early childhood teachers, educating for the future, emotions, kindergarten website
Procedia PDF Downloads 1562302 Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya
Authors: Sadeg M. Ghnia, Mahmud Alghattawi
Abstract:
The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways.Keywords: hydrocarbon potential, stratigraphy, Ghadamis basin, seismic, well data integration
Procedia PDF Downloads 742301 Achieving Flow at Work: An Experience Sampling Study to Comprehend How Cognitive Task Characteristics and Work Environments Predict Flow Experiences
Authors: Jonas De Kerf, Rein De Cooman, Sara De Gieter
Abstract:
For many decades, scholars have aimed to understand how work can become more meaningful by maximizing both potential and enhancing feelings of satisfaction. One of the largest contributions towards such positive psychology was made with the introduction of the concept of ‘flow,’ which refers to a condition in which people feel intense engagement and effortless action. Since then, valuable research on work-related flow has indicated that this state of mind is related to positive outcomes for both organizations (e.g., social, supportive climates) and workers (e.g., job satisfaction). Yet, scholars still do not fully comprehend how such deep involvement at work is obtained, given the notion that flow is considered a short-term, complex, and dynamic experience. Most research neglects that people who experience flow ought to be optimally challenged so that intense concentration is required. Because attention is at the core of this enjoyable state of mind, this study aims to comprehend how elements that affect workers’ cognitive functioning impact flow at work. Research on cognitive performance suggests that working on mentally demanding tasks (e.g., information processing tasks) requires workers to concentrate deeply, as a result leading to flow experiences. Based on social facilitation theory, working on such tasks in an isolated environment eases concentration. Prior research has indicated that working at home (instead of working at the office) or in a closed office (rather than in an open-plan office) impacts employees’ overall functioning in terms of concentration and productivity. Consequently, we advance such knowledge and propose an interaction by combining cognitive task characteristics and work environments among part-time teleworkers. Hence, we not only aim to shed light on the relation between cognitive tasks and flow but also provide empirical evidence that workers performing such tasks achieve the highest states of flow while working either at home or in closed offices. In July 2022, an experience-sampling study will be conducted that uses a semi-random signal schedule to understand how task and environment predictors together impact part-time teleworkers’ flow. More precisely, about 150 knowledge workers will fill in multiple surveys a day for two consecutive workweeks to report their flow experiences, cognitive tasks, and work environments. Preliminary results from a pilot study indicate that on a between level, tasks high in information processing go along with high self-reported fluent productivity (i.e., making progress). As expected, evidence was found for higher fluency in productivity for workers performing information processing tasks both at home and in a closed office, compared to those performing the same tasks at the office or in open-plan offices. This study expands the current knowledge on work-related flow by looking at a task and environmental predictors that enable workers to obtain such a peak state. While doing so, our findings suggest that practitioners should strive for ideal alignments between tasks and work locations to work with both deep involvement and gratification.Keywords: cognitive work, office lay-out, work location, work-related flow
Procedia PDF Downloads 1002300 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas
Abstract:
EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety
Procedia PDF Downloads 5612299 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage
Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja
Abstract:
Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry
Procedia PDF Downloads 1642298 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations
Procedia PDF Downloads 4602297 Cultural Disposition and Implicit Dehumanization of Sexualized Females by Women
Authors: Hong Im Shin
Abstract:
Previous research demonstrated that self-objectification (women view themselves as objects for use) is related to system-justification. Three studies investigated whether cultural disposition as its system-justifying function could have an impact on self-objectification and dehumanization of sexualized women and men. Study 1 (N = 91) employed a survey methodology to examine the relationship between cultural disposition (collectivism vs. individualism), trait of system-justification, and self-objectification. The results showed that the higher tendency of collectivism was related to stronger system-justification and self-objectification. Study 2 (N = 60 females) introduced a single category implicit association task (SC-IAT) to assess the extent to which sexually objectified women were associated with uniquely human attributes (i.e., culture) compared to animal-related attributes (i.e., nature). According to results, female participants associated sexually objectified female targets less with human attributes compared to animal-related attributes. Study 3 (N = 46) investigated whether priming to individualism or collectivism was associated to system justification and sexual objectification of men and women with the use of a recognition task involving upright and inverted pictures of sexualized women and men. The results indicated that the female participants primed to individualism showed an inversion effect for sexualized women and men (person-like recognition), whereas there was no inversion effect for sexualized women in the priming condition of collectivism (object-like recognition). This implies that cultural disposition plays a mediating role for rationalizing the gender status, implicit dehumanization of sexualized females and self-objectification. Future research directions are discussed.Keywords: cultural disposition, dehumanization, implicit test, self-objectification
Procedia PDF Downloads 2382296 Groupthink: The Dark Side of Team Cohesion
Authors: Farhad Eizakshiri
Abstract:
The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research
Procedia PDF Downloads 3962295 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1292294 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 392293 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program
Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel
Abstract:
Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants
Procedia PDF Downloads 1452292 Effect of Palatal Lift Prosthesis on Speech Clarity in Flaccid Dysarthria
Authors: Firas Alfwaress, Abdelraheem Bebers Abdelhadi Hamasha, Maha Abu Awaad
Abstract:
Objectives: The aim of the present study was to investigate the effect of Palatal Lift Prosthesis (PLP) on speech clarity in patients with Flaccid Dysarthria. Five speech measures were investigated including Nasalance Scores, Diadchokinetic (DDK), Vowel Duration, airflow, and Sound Intensity. Participants: Twelve (7 Males and 5 females) native speakers of Jordanian Arabic with Flaccid Dysarthria following stroke, traumatic brain injury, and amyotrophic lateral sclerosis were included. The age of the participants ranged from 8–65 years with an average of 31.75 years. Design: Nasalance Scores, Diadchokinetic rate, Vowel Duration, and Sound Intensity were obtained using the Nasometer II, Model 6450 in three conditions. The first condition included obtaining the five measures without wearing the customized Palatal Lift Prosthesis. The second and third conditions included obtaining the five measures immediately after wearing the Palatal Lift Prosthesis and three months later. Results: Palatal lift prosthesis was found to be effective in individuals with flaccid dysarthria. Results showed decrease in the Nasalance Scores for the syllable repetition tasks and vowel prolongation tasks when comparing the means in the pre PLP with the post PLP at p≤0.001 except for the /m/ prolongation task. Results showed increased DDK repetition task, airflow amount, and sound intensity, and a decrease in vowel length at p≤0.001. Conclusions: The use of palatal lift prosthesis is effective in improving the speech of patients with flaccid dysarthria.Keywords: palatal lift prosthesis, flaccid dysarthria, hypernasality, speech clarity, diadchokinetic rate
Procedia PDF Downloads 3862291 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries
Authors: Jairo Aparecido Martins, Estaner Claro Romão
Abstract:
This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.Keywords: aluminum, industrial clutch, static and dynamic loading, numerical simulation
Procedia PDF Downloads 1882290 Investigation of Possible Behavioural and Molecular Effects of Mobile Phone Exposure on Rats
Authors: Ç. Gökçek-Saraç, Ş. Özen, N. Derin
Abstract:
The N-methyl-D-aspartate (NMDA)-dependent pathway is the major intracellular signaling pathway implemented in both short- and long-term memory formation in the hippocampus which is the most studied brain structure because of its well documented role in learning and memory. However, little is known about the effects of RF-EMR exposure on NMDA receptor signaling pathway including activation of protein kinases, notably Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα). The aim of the present study was to investigate the effects of acute and chronic 900 MHz RF-EMR exposure on both passive avoidance behaviour and hippocampal levels of CaMKIIα and its phosphorylated form (pCaMKIIα). Rats were divided into the following groups: Sham rats, and rats exposed to 900 MHz RF-EMR for 2 h/day for 1 week (acute group) or 10 weeks (chronic group), respectively. Passive avoidance task was used as a behavioural method. The hippocampal levels of selected kinases were measured using Western Blotting technique. The results of passive avoidance task showed that both acute and chronic exposure to 900 MHz RF-EMR can impair passive avoidance behaviour with minor effects on chronic group of rats. The analysis of western blot data of selected protein kinases demonstrated that hippocampal levels of CaMKIIα and pCaMKIIα were significantly higher in chronic group of rats as compared to acute groups. Taken together, these findings demonstrated that different duration times (1 week vs 10 weeks) of 900 MHz RF-EMR exposure have different effects on both passive avoidance behaviour of rats and hippocampal levels of selected protein kinases.Keywords: hippocampus, protein kinase, rat, RF-EMR
Procedia PDF Downloads 255