Search results for: smart signature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1553

Search results for: smart signature

983 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 337
982 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
981 The Mediating Effect of SMEs Export Performance between Technological Advancement Capabilities and Business Performance

Authors: Fawad Hussain, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities (TAC) and business performance (BP) of Malaysian manufacturing MSME’s. Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and business performance of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of export performance and Secondly it investigates that how efficiently and effectively technological advancement capabilities can contributes in overall Malaysian MSME’s business performance. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s export performance and business performance. In this study the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as manufacturing hub of MSMEs. Seven Hundred and Fifty (750) questionnaires were distributed but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their business performance. This study is helpful for small and medium enterprises owners who intent to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.

Keywords: technological advancement capabilities, export performance, business performance, small and medium manufacturing enterprises, malaysia

Procedia PDF Downloads 431
980 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 435
979 Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art

Authors: Apurwa Rastogi, Anant Parghi

Abstract:

Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future.

Keywords: composite bridges, ductility, pseudoelasticity, shape memory alloy, shear connectors

Procedia PDF Downloads 190
978 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 115
977 Assessing the Impact of Adopting Climate Smart Agriculture on Food Security and Multidimensional Poverty: Case of Rural Farm Households in the Central Rift Valley of Ethiopia

Authors: Hussien Ali, Mesfin Menza, Fitsum Hagos, Amare Haileslassie

Abstract:

Climate change has perverse effects on agricultural productivity and natural resource base, negatively affecting the well-being of the households and communities. The government and NGOs promote climate smart agricultural (CSA) practices to help farmers adapt to and mitigate the negative effects of climate change. This study aims to identify widely available CSA practices and examine their impacts on food security and multi-dimensional poverty of rural farm households in the Central Rift Valley, Ethiopia. Using three-stage proportional to size sampling procedure, the study randomly selected 278 households from two kebeles from four districts each. A cross-sectional data of 2020/21 cropping season was collected using structured and pretested survey questionnaire. Food consumption score, dietary diversity score, food insecurity experience scale, and multidimensional poverty index were calculated to measure households’ welfare indicators. Multinomial endogenous switching regression model was used to assess average treatment effects of CSA on these outcome indicators on adopter and non-adopter households. The results indicate that the widely adopted CSA practices in the area are conservation agriculture, soil fertility management, crop diversification, and small-scale irrigation. Adopter households have, on average, statistically higher food consumption score, dietary diversity score and lower food insecurity access scale than non-adopters. Moreover, adopter households, on average, have lower deprivation score in multidimensional poverty compared to non-adopter households. Up scaling the adoption of CSA practices through the improvement of households’ implementation capacity and better information, technical advice, and innovative financing mechanisms is advised. Up scaling CSA practices can further promote achieving global goals such as SDG 1, SDG 2, and SDG 13 targets, aimed to end poverty and hunger and mitigate the adverse impacts of climate change, respectively.

Keywords: climate-smart agriculture, food security, multidimensional poverty, upscaling CSA, Ethiopia

Procedia PDF Downloads 90
976 Intellectual Property Rights Applicability in the Sport Industry

Authors: Poopak Dehshahri

Abstract:

The applicability of intellectual property rights in the sports industry from the present paper’s perspective includes athletic skills, which are comprised of two parts: athletic movements and athletic methods. Also, the applicability pertaining to the athletes᾽ personality, such as the Name, the Image, the Voice, the Signature and their Shirt Number, are deemed as related to the sports natural persons. Radio and TV broadcasting rights of the sports events, the signs and symbols of the athletic institutions including the sign and symbol, trademark (brand name), the name and the place of residence of the sports clubs, the Sports events and the special sports, special slogan of the sports clubs or sports competitions and the sports clothing design are Included under the athletic institutions᾽ applicability of intellectual property rights.

Keywords: sport industry, intellectual property, sport skills, right to fame, radio and television broadcasting right, sport sign

Procedia PDF Downloads 66
975 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 352
974 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 188
973 Smart Cities, Morphology of the Uncertain: A Study on Development Processes Applied by Amazonian Cities in Ecuador

Authors: Leonardo Coloma

Abstract:

The world changes constantly, every second its properties vary due either natural factors or human intervention. As the most intelligent creatures on the planet, human beings have transformed the environment and paradoxically –have allowed ‘mother nature’ to lose species, accelerate the processes of climate change, the deterioration of the ozone layer, among others. The rapid population growth, the procurement, administration and distribution of resources, waste management, and technological advances are some of the factors that boost urban sprawl whose gray stain extends over the territory, facing challenges such as pollution, overpopulation and scarcity of resources. In Ecuador, these problems are added to the social, cultural, economic and political anomalies that have historically affected it. This fact can represent a greater delay when trying to solve global problems, without having paid attention to local inconveniences –smaller ones, but ones that could be the key to project smart solutions on bigger ones. This research aims to highlight the main characteristics of the development models adopted by two Amazonian cities, and analyze the impact of such urban growth on society; to finally define the parameters that would allow the development of an intelligent city in Ecuador, prepared for the challenges of the XXI Century. Contrasts in the climate, temperature, and landscape of Ecuadorian cities are fused with the cultural diversity of its people, generating a multiplicity of nuances of an indecipherable wealth. However, we strive to apply development models that do not recognize that wealth, not understanding them and ignoring that their proposals will vary according to where they are applied. Urban plans seem to take a bit of each of the new theories and proposals of development, which, in the encounter with the informal growth of cities, with those excluded and ‘isolated’ societies, generate absurd morphologies - where the uncertain becomes tangible. The desire to project smart cities is ever growing, but it is important to consider that this concept does not only have to do with the use of information and communication technologies. Its success is achieved when advances in science and technology allow the establishment of a better relationship between people and their context (natural and built). As a research methodology, urban analysis through mappings, diagrams and geographical studies, as well as the identification of sensorial elements when living the city, will make evident the shortcomings of the urban models adopted by certain populations of the Ecuadorian Amazon. Following the vision of previous investigations started since 2014 as part of ‘Centro de Acciones Urbanas,’ the results of this study will encourage the dialogue between the city (as a physical fact) and those who ‘make the city’ (people as its main actors). This research will allow the development of workshops and meetings with different professionals, organizations and individuals in general.

Keywords: Latin American cities, smart cities, urban development, urban morphology, urban sprawl

Procedia PDF Downloads 157
972 Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning

Authors: Wen Li, Zhengyu Bai, Qi Zhang

Abstract:

The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform.

Keywords: case-based reasoning, service blueprint, system design, ANP, VB programming language

Procedia PDF Downloads 175
971 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.

Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation

Procedia PDF Downloads 138
970 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas

Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto

Abstract:

The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.

Keywords: semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics

Procedia PDF Downloads 332
969 The Emancipation of the Inland Areas Between Depopulation, Smart Community and Living Labs: A Case Study of Sardinia

Authors: Daniela Pisu

Abstract:

The paper deals with the issue of territorial inequalities focused on the gap of the marginalization of inland areas with respect to the centrality of urban centers as they are subjected to an almost unstoppable demographic hemorrhage in a context marked by the tendency to depopulation such as the Sardinian territory, to which are added further and intense phenomena of de-anthropization. The research question is aimed at exploring the functionality of the interventions envisaged by the Piano Nazionale Ripresa Resilienza for the reduction of territorial imbalances in these areas to the extent that it is possible to identify policy strategies aimed at increasing the relational expertise of citizenship, functional to the consolidation of results in a long-term perspective. In order to answer this question, the qualitative case study on the Municipality of Ulàssai (province of Nuoro) is highlighted as the only winner on the island, with the Pilot Project ‘Where nature meets art’, intended for the cultural and social regeneration of small towns. The main findings, which emerged from the analysis of institutional sources and secondary data, highlight the socio-demographic fragility of the territory in the face of the active institutional commitment to make Ulàssai a smart community, starting from the enhancement of natural resources and the artistic heritage of fellow citizen Maria Lai. The findings drawn from the inspections and focus groups with the youth population present the aforementioned project as a generative opportunity for both the economic and social fabric, leveraging the public debates of the living labs, where the process of public communication becomes the main vector for the exercise of the rights of participatory democracy. The qualitative lunge leads to the conclusion that the repercussions envisaged by the PNRR in internal areas will be able to show their self-sustainable effect through colloquial administrations such as that of Ulàssai, capable of seeing in the interactive paradigm of public communication that natural process with which to reduce that historical sense of extraneousness attributed to the institution-citizenship relationship.

Keywords: social labs, smart community, depopulation, Sardinia, Piano Nazionale di Ripresa e Resilienza

Procedia PDF Downloads 40
968 GeoWeb at the Service of Household Waste Collection in Urban Areas

Authors: Abdessalam Hijab, Eric Henry, Hafida Boulekbache

Abstract:

The complexity of the city makes sustainable management of the urban environment more difficult. Managers are required to make significant human and technical investments, particularly in household waste collection (focus of our research). The aim of this communication is to propose a collaborative geographic multi-actor device (MGCD) based on the link between information and communication technologies (ICT) and geo-web tools in order to involve urban residents in household waste collection processes. Our method is based on a collaborative/motivational concept between the city and its residents. It is a geographic collaboration dedicated to the general public (citizens, residents, and any other participant), based on real-time allocation and geographic location of topological, geographic, and multimedia data in the form of local geo-alerts (location-specific problems) related to household waste in an urban environment. This contribution allows us to understand the extent to which residents can assist and contribute to the development of household waste collection processes for a better protected urban environment. This suggestion provides a good idea of how residents can contribute to the data bank for future uses. Moreover, it will contribute to the transformation of the population into a smart inhabitant as an essential component of a smart city. The proposed model will be tested in the Lamkansa sampling district in Casablanca, Morocco.

Keywords: information and communication technologies, ICTs, GeoWeb, geo-collaboration, city, inhabitant, waste, collection, environment

Procedia PDF Downloads 128
967 Design of Smart Urban Lighting by Using Social Sustainability Approach

Authors: Mohsen Noroozi, Maryam Khalili

Abstract:

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Keywords: behavior pattern, internet of things, social sustainability, urban lighting

Procedia PDF Downloads 194
966 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
965 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 148
964 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 48
963 Efficient and Timely Mutual Authentication Scheme for RFID Systems

Authors: Hesham A. El Zouka, Mustafa M. Hosni ka

Abstract:

The Radio Frequency Identification (RFID) technology has a diverse base of applications, but it is also prone to security threats. There are different types of security attacks that limit the range of the RFID applications. For example, deploying the RFID networks in insecure environments could make the RFID system vulnerable to many types of attacks such as spoofing attack, location traceability attack, physical attack and many more. Therefore, security is often an important requirement for RFID systems. In this paper, RFID mutual authentication protocol is implemented based on mobile agent technology and timestamp, which are used to provide strong authentication and integrity assurances to both the RFID readers and their corresponding RFID tags. The integration of mobile agent technology and timestamp provides promising results towards achieving this goal and towards reducing the security threats in RFID systems.

Keywords: RFID, security, authentication protocols, privacy, agent-based architecture, time-stamp, digital signature

Procedia PDF Downloads 269
962 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 128
961 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.

Keywords: accident factors, geographic information system, information communication technology, mobility

Procedia PDF Downloads 208
960 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties

Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon

Abstract:

At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.

Keywords: inorganic oxides, electrochromic, photochromic, thermochromic

Procedia PDF Downloads 221
959 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic

Procedia PDF Downloads 110
958 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 313
957 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 338
956 Auteur 3D Filmmaking: From Hitchcock’s Protrusion Technique to Godard’s Immersion Aesthetic

Authors: Delia Enyedi

Abstract:

Throughout film history, the regular return of 3D cinema has been discussed in connection to crises caused by the advent of television or the competition of the Internet. In addition, the three waves of stereoscopic 3D (from 1952 up to 1983) and its current digital version have been blamed for adding a challenging technical distraction to the viewing experience. By discussing the films Dial M for Murder (1954) and Goodbye to Language (2014), the paper aims to analyze the response of recognized auteurs to the use of 3D techniques in filmmaking. For Alfred Hitchcock, the solution to attaining perceptual immersion paradoxically resided in restraining the signature effect of 3D, namely protrusion. In Jean-Luc Godard’s vision, 3D techniques allowed him to explore perceptual absorption by means of depth of field, for which he had long advocated as being central to cinema. Thus, both directors contribute to the foundation of an auteur aesthetic in 3D filmmaking.

Keywords: Alfred Hitchcock, authorship, 3D filmmaking, Jean-Luc Godard, perceptual absorption, perceptual immersion

Procedia PDF Downloads 290
955 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.

Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.

Procedia PDF Downloads 36
954 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 88