Search results for: secondary user (SU)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5360

Search results for: secondary user (SU)

4790 Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering.

Keywords: system modeling, modeling language, modeling requirements, framework

Procedia PDF Downloads 532
4789 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 309
4788 Formation of Convergence Culture in the Framework of Conventional Media and New Media

Authors: Berkay Buluş, Aytekin İşman, Kübra Yüzüncüyıl

Abstract:

Developments in media and communication technologies have changed the way we use media. The importance of convergence culture has been increasing day by day within the framework of these developments. With new media, it is possible to say that social networks are the most powerful platforms that are integrated to this digitalization process. Although social networks seem like the place that people can socialize, they can also be utilized as places of production. On the other hand, audience has become users within the framework of transformation from national to global broadcasting. User generated contents make conventional media and new media collide. In this study, these communication platforms will be examined not as platforms that replace one another but mediums that unify each other. In the light of this information, information that is produced by users regarding new media platforms and all new media use practices are called convergence culture. In other words, convergence culture means intersections of conventional and new media. In this study, examples of convergence culture will be analyzed in detail.

Keywords: new media, convergence culture, convergence, use of new media, user generated content

Procedia PDF Downloads 271
4787 A Survey of Online User Perspectives and Age Profile in an Undergraduate Fundamental Business Technology Course

Authors: Danielle Morin, Jennifer D. E. Thomas, Raafat G. Saade, Daniela Petrachi

Abstract:

Over the past few decades, more and more students choose to enroll in online classes instead of attending in-class lectures. While past studies consider students’ attitudes towards online education and how their grades differed from in-class lectures, the profile of the online student remains a blur. To shed light on this, an online survey was administered to about 1,500 students enrolled in an undergraduate Fundamental Business Technology course at a Canadian University. The survey was comprised of questions on students’ demographics, their reasons for choosing online courses, their expectations towards the course, the communication channels they use for the course with fellow students and with the instructor. This paper focused on the research question: Do the perspectives of online students concerning the online experience, in general, and in the course in particular, differ according to age profile? After several statistical analyses, it was found that age does have an impact on the reasons why students select online classes instead of in-class. For example, it was found that the perception that an online course might be easier than in-class delivery was a more important reason for younger students than for older ones. Similarly, the influence of friends is much more important for younger students, than for older students. Similar results were found when analyzing students’ expectation about the online course and their use of communication tools. Overall, the age profile of online users had an impact on reasons, expectations and means of communication in an undergraduate Fundamental Business Technology course. It is left to be seen if this holds true across other courses, graduate and undergraduate.

Keywords: communication channels, fundamentals of business technology, online classes, pedagogy, user age profile, user perspectives

Procedia PDF Downloads 250
4786 The Influence of Teacher’s Non-Verbal Communication on Ondo State Secondary School Students’ Learning Outcomes in English Language

Authors: Bola M. Tunde-Awe

Abstract:

The study investigated the influence of teacher’s non-verbal communication on secondary school students’ learning outcomes in English language. The study was a survey research. Participants were three hundred Senior Secondary School II students randomly selected from ten schools in Akoko South West Local Government Area of Ondo State, Nigeria. The instrument used for data collection was a questionnaire containing twenty items on a four-point Likert scale which measured teacher’s use of three types of non-verbal communication modes: body movement, eye contact and spatial distance. The data collected was analysed using simple percentage. Findings revealed that teacher’s use of these non-verbal communication modes enhanced learners’ learning outcomes in English language: a total of 271 (90.33%) participants affirmed that teacher’s body language influenced their learning of English; 224 (74.66%) maintained the same stand for eye contact; while 202 (67.33%) affirmed that teacher’s spatial distance had positive influence. Consequent upon these findings, it was recommended that teachers of English language should constantly utilize non-verbal communication in their instructional delivery. Also, non-verbal communication modes should be included in teacher education programme to equip prospective pre-service teachers with the art of non-verbal communication.

Keywords: non-verbal communication, body language, eye contact, spatial distance, learning outcomes

Procedia PDF Downloads 421
4785 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C

Authors: Keaghan Brown

Abstract:

The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.

Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase

Procedia PDF Downloads 77
4784 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 308
4783 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores

Authors: A. Ashraff

Abstract:

The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.

Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems

Procedia PDF Downloads 106
4782 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People

Authors: Paraskevi Theodorou, Apostolos Meliones

Abstract:

In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.

Keywords: accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis

Procedia PDF Downloads 123
4781 Prevalence and Associated Factors with Burnout Among Secondary School Teachers in the City of Cotonou in Benin in 2022

Authors: Antoine Vikkey Hinson, Ranty Jolianelle Dassi, Menonli Adjobimey, Rose Mikponhoue, Paul Ayelo

Abstract:

Introduction: The psychological hardship of the teaching profession maintains a chronic stress that inevitably evolves into burnout (BO) in the absence of adequate preventive measures. The objective of this study is to study the prevalence and factors associated with burnout among secondary school teachers in the city of Cotonou in 2022. Methods: This was a descriptive cross-sectional study with an analytical aim and prospective data collection that took place over a period of 2 months, from July 19 to August 19 and from October 1 to October 31, 2022. Sampling was done using a three-stage probability sampling technique. Data analysis was performed using R 4.1.1 software. Bivariate logistic regression was used to identify associated factors. The significance level chosen was 5% (p < 0.05). Results: A total of 270 teachers were included in the study, of whom 208 (77.00%) were men. The mean age of the workers was 38.03 ± 8.30 years. According to the Maslach Burnout Inventory, 58.51% of the teachers had burnout, with 41.10% of teachers in emotional exhaustion, 27.40% in depersonalization and 21.90% in loss of personal accomplishment. The severity of the syndrome was low to moderate in almost all teachers. The occurrence of BO was associated with), not practicing sports (ORa= 2,38 [1,32; 4,28]), jobs training (ORa= 1,86 [1,04; 3,34]) and an imbalance of effort/reward (ORa= 5,98 [2,24;15,98]). Conclusion: The prevalence of BO is high among secondary school teachers in the city of Cotonou. A larger scale study, including research on its consequences on the teacher and the learner, is necessary in order to act quickly to implement a prevention program.

Keywords: burnout, teachers, Maslach burnout inventory, associated factors, Benin

Procedia PDF Downloads 76
4780 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 311
4779 Narrative Research in Secondary Teacher Education: Examining the Self-Efficacy of Content Area Teacher Candidates

Authors: Tiffany Karalis Noel

Abstract:

The purpose of this study was to examine the factors attributed to the self-efficacy of beginning secondary content area teachers as they moved through their student teaching experiences. This study used a narrative inquiry methodology to understand the variables attributed to teacher self-efficacy among a group of secondary content area teacher candidates. The primary purpose of using a narrative inquiry methodology was to share the stories of content area teacher candidates’ student teaching experiences. Focused research questions included: (1) To what extent does teacher education preparation affect the self-efficacy of beginning content area teachers? (2) Which recurrent elements of teacher education affect the self-efficacy of beginning teachers, regardless of content area? (3) How do the findings from research questions 1 and 2 inform teacher educators? The findings of this study suggest that teacher education preparation affects the self-efficacy of beginning secondary teacher candidates across the content areas; accordingly, the findings of this study provide insight for teacher educators to consider the areas where teacher education programs are failing to provide adequate preparation. These teacher candidates emphasized the value of adequate preparation throughout their teacher education programs to help inform their student teaching experiences. In order to feel effective and successful as beginning teachers, these teacher candidates required additional opportunities to apply the practical application of their teaching skills prior to the student teaching experience, the incorporation of classroom management strategy coursework into their curriculum, and opportunities to explore the extensive demands of the teaching profession ranging from time management to dealing with difficult parents, to name a few referenced examples. The teacher candidates experienced feelings of self-doubt related to their effectiveness as teachers when they were unable to employ successful classroom management strategies, pedagogical techniques, or even feel confidence in navigating challenging conversations with students, parents, and/or administrators. In order to help future teacher candidates and beginning teachers in general overcome these barriers, additional coursework, fieldwork, and practical application experiences should be provided in teacher education programs to help boost the self-efficacy of student teachers.

Keywords: self-efficacy, teacher efficacy, secondary preservice teacher education, teacher candidacy, student teaching

Procedia PDF Downloads 152
4778 Secondary Metabolites Identified from a Pseudoalteromonas rubra Bacterial Strain Isolated from a Fijian Marine Alga

Authors: James Sinclair, Katy Soapi, Brad Carte

Abstract:

The marine environment has continuously demonstrated to be a rich source of secondary metabolites and bioactive compounds that can address the many pharmaceutical problems facing mankind. The emergence of multidrug resistant pathogens has caused scientists to explore contemporary ways of combating these super bugs. A red-pigmented bacterial strain isolated from a marine alga collected in Fiji was identified to be Pseudoalteromonas rubra from 16s rRNA sequencing. This bacterial strain was cultured using a yeast-peptone media and incubated for five days. The ethyl acetate extract of this bacterium was subjected to chromatographic separation techniques such as vacuum liquid chromatography, flash chromatography, size exclusion chromatography and high-pressure liquid chromatography to yield the pure compound and a number of semi-pure fractions. The crude extract and subsequent purified fractions were analyzed by ultraviolet/visible spectroscopy and mass spectroscopy and was found to contain the compounds ivermectin, stenothricin, cyclo-L-pro-L-val, prodigiosin, mycophenolic acid, phenazine-1-carboxylic acid, eplerenone, staurosporine and pseudoalteromone A. The structure of the pure compound, pseudoalteromone A, was elucidated using NMR 1H, 13C, 1H-1H COSY, HSQC and HMBC spectroscopic data.

Keywords: Pseudoalteromonas rubra, Pseudoalteromone A, secondary metabolites, structure elucidation

Procedia PDF Downloads 213
4777 Chemical and Bioactive Constituents Isolated from the Formosa Zamia furfureace L.

Authors: Chien-Liang Chao, Yun-Sheng Lin

Abstract:

Secondary metabolites are applied in the human life of the Chinese herbal medicine. Many drugs are originally extracted from natural products with combination of pharmaceutical and chemical studies. Crude extract of the leaves from Zamia furfureace L. has been shown to exhibit anticancer activities. The first chemical investigation of this plant was carried out by our group. In this study, four known compounds were isolated from Zamia furfureace L. with three lignins (Sesamin (1), Wodeshiol (2) and Paulownin (3)), and one dipeptide (Aurantiamide acetate (4)). The structures of these compounds were analyzed through the 1D-NMR(1H-NMR,13C-NMR)、2D-NMR(COSY、HMQC、HMBC、NOESY) spectroscopic analysis, and by comparison of variety of physical data (IR, mass spectrometry, ultraviolet, optical rotation). Among them, Aurantiamide acetate (4) exhibited weak cytotoxic activity against human gastric cancer cells.

Keywords: Zamia furfureace L., AGS, sesamin, Aurantiamide acetate, secondary metabolites

Procedia PDF Downloads 486
4776 Enhancing Students’ Academic Engagement in Mathematics through a “Concept+Language Mapping” Approach

Authors: Jodie Lee, Lorena Chan, Esther Tong

Abstract:

Hong Kong students face a unique learning environment. Starting from the 2010/2011 school year, The Education Bureau (EDB) of the Government of the Hong Kong Special Administrative Region implemented the fine-tuned Medium of Instruction (MOI) arrangements for secondary schools. Since then, secondary schools in Hong Kong have been given the flexibility to decide the most appropriate MOI arrangements for their schools and under the new academic structure for senior secondary education, particularly on the compulsory part of the mathematics curriculum. In 2019, Hong Kong Diploma of Secondary Education Examination (HKDSE), over 40% of school day candidates attempted the Mathematics Compulsory Part examination in the Chinese version while the rest took the English version. Moreover, only 14.38% of candidates sat for one of the extended Mathematics modules. This results in a serious of intricate issues to students’ learning in post-secondary education programmes. It is worth to note that when students further pursue to an higher education in Hong Kong or even oversea, they may facing substantial difficulties in transiting learning from learning mathematics in their mother tongue in Chinese-medium instruction (CMI) secondary schools to an English-medium learning environment. Some students understood the mathematics concepts were found to fail to fulfill the course requirements at college or university due to their learning experience in secondary study at CMI. They are particularly weak in comprehending the mathematics questions when they are doing their assessment or attempting the test/examination. A government funded project was conducted with the aims of providing integrated learning context and language support to students with a lower level of numeracy and/or with CMI learning experience. By introducing this “integrated concept + language mapping approach”, students can cope with the learning challenges in the compulsory English-medium mathematics and statistics subjects in their tertiary education. Ultimately, in the hope that students can enhance their mathematical ability, analytical skills, and numerical sense for their lifelong learning. The “Concept + Language Mapping “(CLM) approach was adopted and tried out in the bridging courses for students with a lower level of numeracy and/or with CMI learning experiences. At the beginning of each class, a pre-test was conducted, and class time was then devoted to introducing the concepts by CLM approach. For each concept, the key thematic items and their different semantic relations are presented using graphics and animations via the CLM approach. At the end of each class, a post-test was conducted. Quantitative data analysis was performed to study the effect on students’ learning via the CLM approach. Stakeholders' feedbacks were collected to estimate the effectiveness of the CLM approach in facilitating both content and language learning. The results based on both students’ and lecturers’ feedback indicated positive outcomes on adopting the CLM approach to enhance the mathematical ability and analytical skills of CMI students.

Keywords: mathematics, Concept+Language Mapping, level of numeracy, medium of instruction

Procedia PDF Downloads 81
4775 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
4774 Introduction, Implementation and Challenges Facing Competency Based Curriculum in Kenya, a Case Study for Developing Countries

Authors: Hannah Wamaitha Irungu

Abstract:

Educational reforms have been made from time to time since independence in Kenya. Kenya previously had a curriculum system coined as 8.4.4, where learners go through 8 years of primary, 4 years of secondary, and 4 years of tertiary or college education. The 8.4.4 system was very theoretical, examinational oriented, lacked career guidance, lacked I.C.T. infrastructure and had the pressure for exam grading results to move to the next level. Kenya is now implementing a Competency Based Curriculum (C.B.C) system of education. C.B.C, on the other hand, is learner based. It focuses mainly on the ability of the learners, their strengths/likings, not what they are systematically trained to pass exams only for progression. The academic pressure will be eased, which gives a chance to all learners to pursue their fields of strength and not only those endowed academically/theoretically. With C.B.C., each learner’s progress is nurtured and monitored over a period of 14 years that are divided into four major levels (2-6-3-3): 1. Pre-primary education [pp1 and pp2]-2 years; 2. Lower-primary [grades 1 - 6]-6 years; 3. Junior-secondary [grades 7 - 9]-3 years; 4. Senior secondary [grades 10 - 12]-3 years. In this paper, we look at these aspects with regards to C.B.C.: What necessitates it, its key strengths/benefits and application in a developing country; Implementation, what has worked and what is not working with the approach taken by Kenya education stakeholders during this process; Stakeholders, who should be involved/own the process; Conclusion, lessons learned, current status and recommendations going forward.

Keywords: benefits, challenges, competency, curricula, Kenya, successes

Procedia PDF Downloads 106
4773 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech

Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley

Abstract:

Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.

Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition

Procedia PDF Downloads 110
4772 Exploratory Study of Individual User Characteristics That Predict Attraction to Computer-Mediated Social Support Platforms and Mental Health Apps

Authors: Rachel Cherner

Abstract:

Introduction: The current study investigates several user characteristics that may predict the adoption of digital mental health supports. The extent to which individual characteristics predict preferences for functional elements of computer-mediated social support (CMSS) platforms and mental health (MH) apps is relatively unstudied. Aims: The present study seeks to illuminate the relationship between broad user characteristics and perceived attraction to CMSS platforms and MH apps. Methods: Participants (n=353) were recruited using convenience sampling methods (i.e., digital flyers, email distribution, and online survey forums). The sample was 68% male, and 32% female, with a mean age of 29. Participant racial and ethnic breakdown was 75% White, 7%, 5% Asian, and 5% Black or African American. Participants were asked to complete a 25-minute self-report questionnaire that included empirically validated measures assessing a battery of characteristics (i.e., subjective levels of anxiety/depression via PHQ-9 (Patient Health Questionnaire 9-item) and GAD-7 (Generalized Anxiety Disorder 7-item); attachment style via MAQ (Measure of Attachment Qualities); personality types via TIPI (The 10-Item Personality Inventory); growth mindset and mental health-seeking attitudes via GM (Growth Mindset Scale) and MHSAS (Mental Help Seeking Attitudes Scale)) and subsequent attitudes toward CMSS platforms and MH apps. Results: A stepwise linear regression was used to test if user characteristics significantly predicted attitudes towards key features of CMSS platforms and MH apps. The overall regression was statistically significant (R² =.20, F(1,344)=14.49, p<.000). Conclusion: This original study examines the clinical and sociocultural factors influencing decisions to use CMSS platforms and MH apps. Findings provide valuable insight for increasing adoption and engagement with digital mental health support. Fostering a growth mindset may be a method of increasing participant/patient engagement. In addition, CMSS platforms and MH apps may empower under-resourced and minority groups to gain basic access to mental health support. We do not assume this final model contains the best predictors of use; this is merely a preliminary step toward understanding the psychology and attitudes of CMSS platform/MH app users.

Keywords: computer-mediated social support platforms, digital mental health, growth mindset, health-seeking attitudes, mental health apps, user characteristics

Procedia PDF Downloads 92
4771 Inflation and Unemployment in South Africa: A Review of the Relationship 2000 - 2022

Authors: Chigozie Azunna

Abstract:

Various studies have been carried out in several countries to determine the relationship between inflation and unemployment. The study was carried out to review this relationship in South Africa. Secondary data was obtained from Statistics South Africa, Reserve bank, and other reliable secondary sources to review this relationship. The study incorporated yearly inflation and unemployment data in South Africa from 2000 to 2022 to explain the relationship between inflation and unemployment in South Africa. The study found the relationship to be nonlinear and lacking any significant association or relationship. Various economic schools of thought postulations were incorporated in the review as it is applied to South Africa. Essentially, the Phillips Curve was reviewed in-line with the study objective.

Keywords: inflation and unemployment in south africa, philips curve, monetarists, neo keynesian, new-classical

Procedia PDF Downloads 89
4770 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak

Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena

Abstract:

Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.

Keywords: fusion, gas fueling, recycling, Tokamak, Aditya

Procedia PDF Downloads 402
4769 Comparison Between PID and PD Controllers for 4 Cable-Based Robots

Authors: Fouad Inel, Lakhdar Khochemane

Abstract:

This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: the first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-IntegratedDerivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.

Keywords: dynamic modeling, geometric modeling, graphical user interface, open loop, parallel cable-based robots, PID/PD controllers

Procedia PDF Downloads 421
4768 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 562
4767 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level

Authors: Pedro M. Abreu, Bruno R. Mendes

Abstract:

The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.

Keywords: clinical pharmacy, co-payments, healthcare, medicines

Procedia PDF Downloads 251
4766 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 643
4765 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant

Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.

Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment

Procedia PDF Downloads 484
4764 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 121
4763 Exploring the Relationship Between Past and Present Reviews: The Influence of User Generated Content on Future Hotel Guest Experience Perceptions

Authors: Sacha Joseph-Mathews, Leili Javadpour

Abstract:

In the tourism industry, hoteliers spend millions annually on marketing and positioning efforts for their respective hotels, all in an effort to create a specific image in the minds of the consumer. Yet despite extensive efforts to seduce potential hotel guests with sophisticated advertising messages generated by hotel entities, consumers continue to mistrust corporate branding, preferring instead to place their trust in the reviews of their consumer peers. In today’s complex and cluttered marketplace, online reviews can serve as a mediator for consumers who do not have actual knowledge and experiences with the brand, but are in the process of deciding whether or not to engage in a consumption exercise. Traditionally, consumers have used online reviews as a source of comfort and confirmation of a product/service’s positioning. But today, very few customers make any purchase decisions without first researching existing user reviews, making reviews more of a necessity, rather than a luxury in the purchase decision process. The influence of user generated content (UGC) is amplified in the tourism industry; as more than a third of potential hotel guests will not book a room without first reading a review. As corporate branding becomes less relevant and online reviews become more important, how much of the consumer’s stay expectations are being dictated by existing UGC? Moreover, as hotel guest experience a hotel through the lens of an existing review, how much of their stay and in turn their review, would have been influenced by those reviews that they read? Ultimately, there is the potential for UGC to dictate what potential guests will be most critical about, and or most focused on during their stay. If UGC is a stronger influencer in the purchase decision process than corporate branding, doesn’t it have the potential to dictate, the entire stay experience by influencing the expectations of the guest prior to them arriving on the property? For example, if a hotel is an eco-destination and they focus their branding on their website around sustainability and the retreat nature of the hotel. Yet, guest reviews constantly discuss how dissatisfactory the service and food was with no mention of nature or sustainability, will future reviews then focus primarily on the food? Using text analysis software to examine over 25,000 online reviews, we explore the extent to which new reviews are influenced by wording used in previous reviews for a hotel property, versus content generated by corporate positioning. Additionally, we investigate how distinct hotel related UGC is across different types of tourism destinations. Our findings suggest that UGC can have a greater impact on future reviews, than corporate branding and there is more cohesiveness across UGC of different types of hotel properties than anticipated. A model of User Generated Content Influence is presented and the managerial impact of the power of online reviews to trump corporate branding and shape future user experiences is discussed.

Keywords: user generated content, UGC, corporate branding, online reviews, hotels and tourism

Procedia PDF Downloads 94
4762 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav

Abstract:

Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.

Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure

Procedia PDF Downloads 81
4761 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231