Search results for: peak estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3227

Search results for: peak estimation

2657 Integrative System of GDP, Emissions, Health Services and Population Health in Vietnam: Dynamic Panel Data Estimation

Authors: Ha Hai Duong, Amnon Levy Livermore, Kankesu Jayanthakumaran, Oleg Yerokhin

Abstract:

The issues of economic development, the environment and human health have been investigated since 1990s. Previous researchers have found different empirical evidences of the relationship between income and environmental pollution, health as determinant of economic growth, and the effects of income and environmental pollution on health in various regions of the world. This paper concentrates on integrative relationship analysis of GDP, carbon dioxide emissions, and health services and population health in context of Vietnam. We applied the dynamic generalized method of moments (GMM) estimation on datasets of Vietnam’s sixty-three provinces for the years 2000-2010. Our results show the significant positive effect of GDP on emissions and the dependence of population health on emissions and health services. We find the significant relationship between population health and GDP. Additionally, health services are significantly affected by population health and GDP. Finally, the population size too is other important determinant of both emissions and GDP.

Keywords: economic development, emissions, environmental pollution, health

Procedia PDF Downloads 620
2656 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 128
2655 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates

Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau

Abstract:

There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.

Keywords: duration estimates, long durations, passage of time judgements, task demands

Procedia PDF Downloads 128
2654 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 448
2653 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems

Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang

Abstract:

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.

Keywords: fault detection, linear parameter varying, model predictive control, set theory

Procedia PDF Downloads 246
2652 Performance Analysis of PAPR Reduction in OFDM Systems based on Partial Transmit Sequence (PTS) Technique

Authors: Alcardo Alex Barakabitze, Tan Xiaoheng

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) is a special case of Multi-Carrier Modulation (MCM) technique which transmits a stream of data over a number of lower data rate subcarriers. OFDM splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. This paper explores the Peak to Average Power Reduction (PAPR) using the Partial Transmit Sequence technique. We provide the distribution analysis and the basics of OFDM signals and then show how the PAPR increases as the number of subcarriers increases. We provide the performance analysis of CCDF and PAPR expressed in decibels through MATLAB simulations. The simulation results show that, in PTS technique, the performance of PAPR reduction in OFDM systems improves significantly as the number of sub-blocks increases. However, by keeping the same number of sub-blocks variation, oversampling factor and the number of OFDM blocks’ iteration for generating the CCDF, the OFDM systems with 128 subcarriers have an improved performance in PAPR reduction compared to OFDM systems with 256, 512 or >512 subcarriers.

Keywords: OFDM, peak to average power reduction (PAPR), bit error rate (BER), subcarriers, wireless communications

Procedia PDF Downloads 509
2651 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 260
2650 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 213
2649 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 409
2648 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Aleksandra Tepic-Horecki, Zdravko Sumic

Abstract:

In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).

Keywords: antioxidant activity, generalized pair correlation method, lettuce, regression analysis

Procedia PDF Downloads 384
2647 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 196
2646 Pricing Techniques to Mitigate Recurring Congestion on Interstate Facilities Using Dynamic Feedback Assignment

Authors: Hatem Abou-Senna

Abstract:

Interstate 4 (I-4) is a primary east-west transportation corridor between Tampa and Daytona cities, serving commuters, commercial and recreational traffic. I-4 is known to have severe recurring congestion during peak hours. The congestion spans about 11 miles in the evening peak period in the central corridor area as it is considered the only non-tolled limited access facility connecting the Orlando Central Business District (CBD) and the tourist attractions area (Walt Disney World). Florida officials had been skeptical of tolling I-4 prior to the recent legislation, and the public through the media had been complaining about the excessive toll facilities in Central Florida. So, in search for plausible mitigation to the congestion on the I-4 corridor, this research is implemented to evaluate the effectiveness of different toll pricing alternatives that might divert traffic from I-4 to the toll facilities during the peak period. The network is composed of two main diverging limited access highways, freeway (I-4) and toll road (SR 417) in addition to two east-west parallel toll roads SR 408 and SR 528, intersecting the above-mentioned highways from both ends. I-4 and toll road SR 408 are the most frequently used route by commuters. SR-417 is a relatively uncongested toll road with 15 miles longer than I-4 and $5 tolls compared to no monetary cost on 1-4 for the same trip. The results of the calibrated Orlando PARAMICS network showed that percentages of route diversion vary from one route to another and depends primarily on the travel cost between specific origin-destination (O-D) pairs. Most drivers going from Disney (O1) or Lake Buena Vista (O2) to Lake Mary (D1) were found to have a high propensity towards using I-4, even when eliminating tolls and/or providing real-time information. However, a diversion from I-4 to SR 417 for these OD pairs occurred only in the cases of the incident and lane closure on I-4, due to the increase in delay and travel costs, and when information is provided to travelers. Furthermore, drivers that diverted from I-4 to SR 417 and SR 528 did not gain significant travel-time savings. This was attributed to the limited extra capacity of the alternative routes in the peak period and the longer traveling distance. When the remaining origin-destination pairs were analyzed, average travel time savings on I-4 ranged between 10 and 16% amounting to 10 minutes at the most with a 10% increase in the network average speed. High propensity of diversion on the network increased significantly when eliminating tolls on SR 417 and SR 528 while doubling the tolls on SR 408 along with the incident and lane closure scenarios on I-4 and with real-time information provided. The toll roads were found to be a viable alternative to I-4 for these specific OD pairs depending on the user perception of the toll cost which was reflected in their specific travel times. However, on the macroscopic level, it was concluded that route diversion through toll reduction or elimination on surrounding toll roads would only have a minimum impact on reducing I-4 congestion during the peak period.

Keywords: congestion pricing, dynamic feedback assignment, microsimulation, paramics, route diversion

Procedia PDF Downloads 176
2645 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose

Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun

Abstract:

Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.

Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard

Procedia PDF Downloads 159
2644 Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry

Authors: Kanika Sharma, Shaila Bahl, Birendra Singh, Pratik Kumar, S. P. Lochab, A. Pandey

Abstract:

In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam.

Keywords: gamma radiation, ion beam, nanocrystalline, radiation dosimetry

Procedia PDF Downloads 182
2643 BER of the Leaky Feeder under Rayleigh Fading Multichannel Reception with Imperfect Phase Estimation

Authors: Hasan Farahneh, Xavier Fernando

Abstract:

Leaky Feeder (LF) has been a proven technology for many decades and its promises broadband wireless access in short range but being overlooked until now. The LF is a natural MIMO transceiver ideal for micro and pico cells. In this work, the LF is considered as a linear antenna array MultiInput-Single-Output (MISO) and derive the average bit error rate (BER) in Rayleigh fading channel considering ideal and independent paths (iid) which consider there is no correlation and mutual coupling between transmit antennas (slots) or receiver antenna considering QPSK modulation with imperfect phase estimation. We consider maximal ratio transmission (MRT) at the transmit end and maximal ratio combining (MRC) at the receiving end. Analytical expressions are derived for the BER with radiating cable transmitters. The effects of slot spacing and carrier frequency on the BER are also studied. Numerical evaluations show the radiating cable transmitter offer much lower BER than a single antenna transmitter with same SNR.

Keywords: leaky feeder, BER, QPSK, rayleigh fading, channel gain, phase mismatch

Procedia PDF Downloads 378
2642 Process for Analyzing Information Security Risks Associated with the Incorporation of Online Dispute Resolution Systems in the Context of Conciliation in Colombia

Authors: Jefferson Camacho Mejia, Jenny Paola Forero Pachon, Luis Carlos Gomez Florez

Abstract:

The innumerable possibilities offered by the use of Information Technology (IT) in the development of different socio-economic activities has made a change in the social paradigm and the emergence of the so-called information and knowledge society. The Colombian government, aware of this reality, has been promoting the use of IT as part of the E-government strategy adopted in the country. However, it is well known that the use of IT implies the existence of certain threats that put the security of information in the digital environment at risk. One of the priorities of the Colombian government is to improve access to alternative justice through IT, in particular, access to Alternative Dispute Resolution (ADR): conciliation, arbitration and friendly composition; by means of which it is sought that the citizens directly resolve their differences. To this end, a trend has been identified in the use of Online Dispute Resolution (ODR) systems, which extend the benefits of ADR to the digital environment through the use of IT. This article presents a process for the analysis of information security risks associated with the incorporation of ODR systems in the context of conciliation in Colombia, based on four fundamental stages identified in the literature: (I) Identification of assets, (II) Identification of threats and vulnerabilities (III) Estimation of the impact and 4) Estimation of risk levels. The methodological design adopted for this research was the grounded theory, since it involves interactions that are applied to a specific context and from the perspective of diverse participants. As a result of this investigation, the activities to be followed are defined to carry out an analysis of information security risks, in the context of the conciliation in Colombia supported by ODR systems, thus contributing to the estimation of the risks to make possible its subsequent treatment.

Keywords: alternative dispute resolution, conciliation, information security, online dispute resolution systems, process, risk analysis

Procedia PDF Downloads 236
2641 Interference Management in Long Term Evolution-Advanced System

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

Keywords: capacity, carrier aggregation, LTE-Advanced, MIMO (Multiple Input Multiple Output), peak data rate, spectral efficiency

Procedia PDF Downloads 250
2640 A Game of Information in Defense/Attack Strategies: Case of Poisson Attacks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we briefly introduce the concept of Poisson attacks in the case of defense/attack strategies where attacks are assumed to be continuous. We suggest a game model in which the attacker will combine both criteria of a sufficient confidence level of a successful attack and a reasonably small size of the estimation error in order to launch an attack. Here, estimation error arises from assessing the system failure upon attack using aggregate data at the system level. The corresponding error is referred to as aggregation error. On the other hand, the defender will attempt to deter attack by making one or both criteria inapplicable. The defender will build his/her strategy by both strengthening the targeted system and increasing the size of error. We will formulate the defender problem based on appropriate optimization models. The attacker will opt for a Bayesian updating in assessing the impact on the improvement made by the defender. Then, the attacker will evaluate the feasibility of the attack before making the decision of whether or not to launch it. We will provide illustrations to better explain the process.

Keywords: attacker, defender, game theory, information

Procedia PDF Downloads 463
2639 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 317
2638 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 389
2637 Seismic Hazard Analysis for a Multi Layer Fault System: Antalya (SW Turkey) Example

Authors: Nihat Dipova, Bulent Cangir

Abstract:

This article presents the results of probabilistic seismic hazard analysis (PSHA) for Antalya (SW Turkey). South west of Turkey is characterized by large earthquakes resulting from the continental collision between the African, Arabian and Eurasian plates and crustal faults. Earthquakes around the study area are grouped into two; crustal earthquakes (D=0-50 km) and subduction zone earthquakes (50-140 km). Maximum observed magnitude of subduction earthquakes is Mw=6.0. Maximum magnitude of crustal earthquakes is Mw=6.6. Sources for crustal earthquakes are faults which are related with Isparta Angle and Cyprus Arc tectonic structures. A new earthquake catalogue for Antalya, with unified moment magnitude scale has been prepared and seismicity of the area around Antalya city has been evaluated by defining ‘a’ and ‘b’ parameters of the Gutenberg-Richter recurrence relationship. The Standard Cornell-McGuire method has been used for hazard computation utilizing CRISIS2007 software. Attenuation relationships proposed by Chiou and Youngs (2008) has been used for 0-50 km earthquakes and Youngs et. al (1997) for deep subduction earthquakes. Finally, Seismic hazard map for peak horizontal acceleration on a uniform site condition of firm rock (average shear wave velocity of about 1130 m/s) at a hazard level of 10% probability of exceedance in 50 years has been prepared.

Keywords: Antalya, peak ground acceleration, seismic hazard assessment, subduction

Procedia PDF Downloads 369
2636 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution

Procedia PDF Downloads 282
2635 A Diurnal Light Based CO₂ Elevation Strategy for Up-Scaling Chlorella sp. Production by Minimizing Oxygen Accumulation

Authors: Venkateswara R. Naira, Debasish Das, Soumen K. Maiti

Abstract:

Achieving high cell densities of microalgae under obligatory light-limiting and high light conditions of diurnal (low-high-low variations of daylight intensity) sunlight are further limited by CO₂ supply and dissolved oxygen (DO) accumulation in large-scale photobioreactors. High DO levels cause low growth due to photoinhibition and/or photorespiration. Hence, scalable elevated CO₂ levels (% in air) and their effect on DO accumulation in a 10 L cylindrical membrane photobioreactor (a vertical tubular type) are studied in the present study. The CO₂ elevation strategies; biomass-based, pH control based (types II & I) and diurnal light based, were explored to study the growth of Chlorella sp. FC2 IITG under single-sided LED lighting in the laboratory, mimicking diurnal sunlight. All the experiments were conducted in fed-batch mode by maintaining N and P sources at least 50% of initial concentrations of the optimized BG-11 medium. It was observed that biomass-based (2% - 1st day, 2.5% - 2nd day and 3% - thereafter) and well-known pH control based, type-I (5.8 pH throughout) strategies were found lethal for FC2 growth. In both strategies, the highest peak DO accumulation of 150% air saturation was resulted due to high photosynthetic activity caused by higher CO₂ levels. In the pH control based type-I strategy, automatically resulted CO₂ levels for pH control were recorded so high (beyond the inhibition range, 5%). However, pH control based type-II strategy (5.8 – 2 days, 6.3 – 3 days, 6.7 – thereafter) showed final biomass titer up to 4.45 ± 0.05 g L⁻¹ with peak DO of 122% air saturation; high CO₂ levels beyond 5% (in air) were recorded thereafter. Thus, it became sustainable for obtaining high biomass. Finally, a diurnal light based (2% - low light, 2.5 % - medium light and 3% - high light) strategy was applied on the basis of increasing/decreasing photosynthesis due to increase/decrease in diurnal light intensity. It has resulted in maximum final biomass titer of 5.33 ± 0.12 g L⁻¹, with total biomass productivity of 0.59 ± 0.01 g L⁻¹ day⁻¹. The values are remarkably higher than constant 2% CO₂ level (final biomass titer: 4.26 ± 0.09 g L⁻¹; biomass productivity: 0.27 ± 0.005 g L⁻¹ day⁻¹). However, 135% air saturation of peak DO was observed. Thus, the diurnal light based elevation should be further improved by using CO₂ enriched N₂ instead of air. To the best of knowledge, the light-based CO₂ elevation strategy is not reported elsewhere.

Keywords: Chlorella sp., CO₂ elevation strategy, dissolved oxygen accumulation, diurnal light based CO₂ elevation, high cell density, microalgae, scale-up

Procedia PDF Downloads 121
2634 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP

Procedia PDF Downloads 119
2633 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 237
2632 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 90
2631 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 499
2630 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 327
2629 Evaluating the Functional Properties of Flours Varying Percentage Blend of Malted Acha, Aya and Ede flours as Potentials for Weaning Food Formulation

Authors: O. G. Onuoha, E. Chibuzo, H. M. Badau

Abstract:

Traditional weaning foods are dense or thick paste, which are then diluted with large volume of water to produce thin drinkable consistency for infants. This work was aimed at evaluating the functional properties of six varying percentage blends of locally abundant, underutilized crops; malted acha (Digitaria exiles), aya (Cyperus esculentus) and ede (Colocasia esculentum) flours as weaning foods. The results of bulk density and starch digestibility showed a decrease with increasing percentage addition of malted acha with values from 5.889±0.98 to 7.953±0.103; -5.45 to -13.6 respectively. While water absorption capacity, measure of dispersibility, wettability, swelling power, % solubility increased with increase in percentage addition of malted acha with values from 6.6±0.712 to 8.1±0.1; 2.12 to 37.225; 3.21±0.04 to 3.6±0.03; 20.64 to 24.46 respectively. There was no significant difference between all the formula and the control. Results of pasting properties showed that the peak viscosity, break down, final viscosity, setback values from -0.42±0.085 to -3.67±0.085; 5.63±0.045 to 1.79±0.04;-3.88±0.045 to -1.475±0.275; 2.17±0.045 to 2.93±0.045 respectively. There was no significant different between some of the weaning formula and the control for peak viscosity, break down, final viscosity and temperatures required to form paste. The formula compared favorably with the control- a commercially sold formula.

Keywords: weaning food, functional properties, under-utilized crops, blends

Procedia PDF Downloads 439
2628 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement

Procedia PDF Downloads 303