Search results for: management models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15494

Search results for: management models

14924 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 329
14923 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 233
14922 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 74
14921 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
14920 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
14919 Gender Diversity Practices in Talent Management: An Exploratory Study in the Space Industry in Luxembourg

Authors: K. Usanova

Abstract:

This study contributes to the conceptual and empirical understanding of how gender diversity management (GDM) is integrated into talent management (TM). Following the grounded theory, we interviewed 40 HR managers and talents from the space industry in Luxembourg. We provide a nuanced picture of what attitude on the GDM in TM organizations have, what strategies and practices they conduct, and how they differ from each other. Based on these differences, we developed three types of GDM integration to TM and explained the talents’ view on this issue. To the author's best knowledge, this study is the first empirical investigation of GDM in TM in the space industry that integrates both the TM executives' and TM receivers' views on gender equality in TM.

Keywords: gender diversity management, high-technology industry, human resource management, talent management

Procedia PDF Downloads 133
14918 Project Management Agile Model Based on Project Management Body of Knowledge Guideline

Authors: Mehrzad Abdi Khalife, Iraj Mahdavi

Abstract:

This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.

Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard

Procedia PDF Downloads 341
14917 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
14916 The Effectiveness of Conflict Management of Factories' Employee in Thailand

Authors: Pacharaporn Lekyan

Abstract:

The purpose of this study is to explore the conflict management affecting the workplace and analyze the ability of the prediction of leadership of the headman and the methods to handle the conflict in an organization. The quantitative research and developed the questionnaire in order to collect information from the respondents from 200 samples from leader or manager who worked in frozen food factories in Thailand. The result analysis shows about the problem of the relationship between conflict management factors, leadership, and the confliction in organization. The emotion of the leader in the organization is not the only factor that can affect conflict management but also the emotion of surrounding people which this factor can happen all the time and shows that four out of five factors of interpersonal conflict management have affected on emotion intelligence and also shows that the behaviors of leadership have an influence on conflict management.

Keywords: conflict management, emotional intelligence, leadership, factories' employee

Procedia PDF Downloads 365
14915 An Effective Change in the Strategic Structure of Quality Management Systems: The Organization’s Needs Management

Authors: Joel Carlos Vieira Reinhardt, Mariana de Freitas Dewes, Odair Lelis Gonçalez

Abstract:

This paper proposes a method to implement a strategic framework for the quality management system that considers the analysis of prospective scenarios in the determination of policy, mission, vision, objectives, processes, monitoring, and goals. Semantic categorization of qualitative testimonial research on employee perception shows it was possible to implement an effective change in the organizations at the Department of Aerospace Science and Technology through the focus on the organization's needs management, producing a rupture with the historical managerial practice.

Keywords: management of company needs, mission, prospective scenarios, quality management, quality policy, vision

Procedia PDF Downloads 117
14914 Short-Term Operation Planning for Energy Management of Exhibition Hall

Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.

Keywords: exhibition hall, energy management, predictive model, simulation-based optimization

Procedia PDF Downloads 339
14913 Drying Kinetics of Vacuum Dried Beef Meat Slices

Authors: Elif Aykin Dincer, Mustafa Erbas

Abstract:

The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.

Keywords: beef slice, drying models, effective diffusivity, vacuum

Procedia PDF Downloads 289
14912 Rethinking Urban Green Space Quality and Planning Models from Users and Experts’ Perspective for Sustainable Development: The Case of Debre Berhan and Debre Markos Cities, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

This study analyzed the users' and experts' views on the green space quality and planning models in Debre Berhan (DB) and Debre Markos (DM) cities in Ethiopia. A questionnaire survey was conducted on 350 park users (148 from DB and 202 from DM) to rate the accessibility, size, shape, vegetation cover, social and cultural context, conservation and heritage, community participation, attractiveness, comfort, safety, inclusiveness, and maintenance of green spaces using a Likert scale. A key informant interview was held with 13 experts in DB and 12 in DM. Descriptive statistics and tests of independence of variables using the chi-square test were done. A statistically significant association existed between the perception of green space quality attributes and users' occupation (χ² (160, N = 350) = 224.463, p < 0.001), age (χ² (128, N = 350) = 212.812, p < 0.001), gender (χ² (32, N = 350) = 68.443, p < 0.001), and education level (χ² (192, N = 350) = 293.396, p < 0.001). 61.7 % of park users were unsatisfied with the quality of urban green spaces. The users perceived dense vegetation cover as "good," with a mean value of 3.41, while the remaining were perceived as "medium with a mean value of 2.62 – 3.32". Only quantitative space standards are practiced as a green space planning model, while other models are unfamiliar and never used in either city. Therefore, experts need to be aware of and practice urban green models during urban planning to ensure that new developments include green spaces to accommodate the community's and the environment's needs.

Keywords: urban green space, quality, users and experts, green space planning models, Ethiopia

Procedia PDF Downloads 59
14911 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.

Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys

Procedia PDF Downloads 176
14910 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: collision, impact models, finite element method, Hertz Theory

Procedia PDF Downloads 175
14909 Internal Methane Dry Reforming Kinetic Models in Solid Oxide Fuel Cells

Authors: Saeed Moarrefi, Shou-Han Zhou, Liyuan Fan

Abstract:

Coupling with solid oxide fuel cells, methane dry reforming is a promising pathway for energy production while mitigating carbon emissions. However, the influence of carbon dioxide and electrochemical reactions on the internal dry reforming reaction within the fuel cells remains debatable, requiring accurate kinetic models to describe the internal reforming behaviors. We employed the Power-Law and Langmuir Hinshelwood–Hougen Watson models in an electrolyte-supported solid oxide fuel cell with a NiO-GDC-YSZ anode. The current density used in this study ranges from 0 to 1000 A/m2 at 973 K to 1173 K to estimate various kinetic parameters. The influence of the electrochemical reactions on the adsorption terms, the equilibrium of the reactions, the activation energy, the pre-exponential factor of the rate constant, and the adsorption equilibrium constant were studied. This study provides essential parameters for future simulations and highlights the need for a more detailed examination of reforming kinetic models.

Keywords: dry reforming kinetics, Langmuir Hinshelwood–Hougen Watson, power-law, SOFC

Procedia PDF Downloads 22
14908 Value-Based Management Education Need of the Hour

Authors: Surendar Vaddepalli

Abstract:

Management education plays a crucial role to enable industry to cope with emerging challenges. It has spread in the last fifteen-twenty years in India and gained popularity as it was aimed at imbibing versatility and multi-tasking abilities in student community. Several management institutions started looking at upgrading their competencies in terms of faculty, research and industry interaction. The competitive business environment has been one of the drivers that paved the way for growing demand for management graduates in the employment market. Industry expects their executives to be engaged in a constant learning process. The ever-increasing demand for managers has led to establish more management institutions; however, the growth was not in line with the expectations from the industry. While top Business Schools are continuously changing the contents and delivery methodologies, academic standards of most of the other Business Schools are not up to the mark and quality of service provided by these institutes has opened various issues for discussion. On this back ground it is important to address the concerns of Indian management education experiencing with time and we have to rethink about the management education and efforts should be made to create a dynamic environment. This paper ties to study the current trends and tries to find out need for value based management education in India to rejuvenate it.

Keywords: management education, management, value based management education, business school, India

Procedia PDF Downloads 379
14907 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 177
14906 The Role of Management Information Systems in the Strategic Management of Institutions of Higher Education

Authors: Szilvia Vincze, Zoltán Bács

Abstract:

It has become increasingly important for institutions of higher education as well to use available resources as effectively as possible for the implementation of the institution’s strategic plans and, at the same time, to ensure a stable future. This is the responsibility of the management and administration of the institution. Having access to complete and comprehensive information is indispensable for making dynamic and well-founded decisions that consider the realization of objectives to be primary and that manage possibly emerging risks, etc. The present paper introduces the role of Management Information Systems (MIS) at the University of Debrecen, one of the largest institutions of higher education in Hungary, and also discusses the utilization of this and associated information systems in management functions.

Keywords: management information system (MIS), higher education, Hungary, strategy formulation

Procedia PDF Downloads 505
14905 Flexible Capacitive Sensors Based on Paper Sheets

Authors: Mojtaba Farzaneh, Majid Baghaei Nejad

Abstract:

This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.

Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven

Procedia PDF Downloads 353
14904 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 377
14903 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 274
14902 Design Patterns for Emergency Management Processes

Authors: Tomáš Ludík, Jiří Barta, Josef Navrátil

Abstract:

Natural or human made disasters have a significant negative impact on the environment. At the same time there is an extensive effort to support management and decision making in emergency situations by information technologies. Therefore the purpose of the paper is to propose a design patterns applicable in emergency management, enabling better analysis and design of emergency management processes and therefore easier development and deployment of information systems in the field of emergency management. It will be achieved by detailed analysis of existing emergency management legislation, contingency plans, and information systems. The result is a set of design patterns focused at emergency management processes that enable easier design of emergency plans or development of new information system. These results will have a major impact on the development of new information systems as well as to more effective and faster solving of emergencies.

Keywords: analysis and design, Business Process Modelling Notation, contingency plans, design patterns, emergency management

Procedia PDF Downloads 485
14901 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki

Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas

Abstract:

The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.

Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5

Procedia PDF Downloads 77
14900 Investigation of Information Security Incident Management Based on International Standard ISO/IEC 27002 in Educational Hospitals in 2014

Authors: Nahid Tavakoli, Asghar Ehteshami, Akbar Hassanzadeh, Fatemeh Amini

Abstract:

Introduction: The Information security incident management guidelines was been developed to help hospitals to meet their information security event and incident management requirements. The purpose of this Study was to investigate on Information Security Incident Management in Isfahan’s educational hospitals in accordance to ISO/IEC 27002 standards. Methods: This was a cross-sectional study to investigate on Information Security Incident Management of educational hospitals in 2014. Based on ISO/IEC 27002 standards, two checklists were applied to check the compliance with standards on Reporting Information Security Events and Weakness and Management of Information Security Incidents and Improvements. One inspector was trained to carry out the assessments in the hospitals. The data was analyzed by SPSS. Findings: In general the score of compliance Information Security Incident Management requirements in two steps; Reporting Information Security Events and Weakness and Management of Information Security Incidents and Improvements was %60. There was the significant difference in various compliance levels among the hospitals (p-valueKeywords: information security incident management, information security management, standards, hospitals

Procedia PDF Downloads 575
14899 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents

Authors: M. Ouassaf, S. Belaid

Abstract:

A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.

Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR

Procedia PDF Downloads 156
14898 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 323
14897 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
14896 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 275
14895 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 200