Search results for: lid driven cavity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1998

Search results for: lid driven cavity

1428 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 436
1427 The Case for Creativity in the Metaverse

Authors: D. van der Merwe

Abstract:

As the environment and associated media in which creativity is expressed transitions towards digital spaces, that same creativity undergoes a transition from individual to social forms of expression. This paper explores how the emerging social construction collectively called ‘The Metaverse’ will fundamentally alter creativity: by examining creativity as a social rather than individual process, as well as the mimetic logic underlying the platforms in which this creativity is expressed, a crisis in identity, commodification and social programming is revealed wherein the artist is more a commodity than their creations, resulting in prosthetic personalities pandering to an economic logic driven by biased algorithms. Consequently the very aura of the art and creative media produced within the digital domain must be re-assessed in terms of its cultural and exhibition value.

Keywords: aura, commodification, creativity, metaverse, mimesis, social programming

Procedia PDF Downloads 11
1426 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 209
1425 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus

Procedia PDF Downloads 403
1424 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 163
1423 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
1422 The Role of Vitamin D Supplementation in Augmenting IFN-γ Production in Response to Mycobacterium Tuberculosis Infection: A Randomized Controlled Trial

Authors: Muhammad Imran Hussain, Ramisha Ibtisam, Tayyaba Fatima, Huba Khalid, Ayesha Aziz, Khansa, Adan Sitara, Anam Shahzad, Aymen Jabeen

Abstract:

Vitamin D supports the immune system fight TB by inhibiting Interferon-gamma (IFN-γ) and lowering host inflammation. The purpose of the research was to see if giving the vitamin D supplements to TB patients affected their prognosis. A randomized placebo control study of 200 TB patients was performed among which 106 received 400,000 IU of injectable vitamin D3 and 94 received placebo for 2 doses. Assessment was carried out at the end of every month for 3 months. IFN-γ responses to whole blood stimulation generated by the Mycobacterium tuberculosis sonicate (MTBs) antigen and early secreted and T cell activated 6 kDa (ESAT6) were assessed at 0 and 12 weeks. The statistical analysis used descriptive statistics (mean and standard deviation), Friedman's test and Fisher's test. The vitamin D group gained significantly more weight (+3.90 pounds) and had less persistent lung disease on imaging (1.33 zones vs. 1.84 zones). They also had a 50% decrease in cavity size. Additionally, patients with low baseline serum concentrations of 25-(OH)D had a significant increase in MTB-induced IFN-γ production after taking vitamin D supplements. Vitamin D administration in large amounts can hasten the recovery of TB patients. The findings point is a therapeutically useful activity of Vitamin D's in the management for tuberculosis.

Keywords: tuberculosis, vitamin D, interferon gamma, protein, infection

Procedia PDF Downloads 52
1421 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation

Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim

Abstract:

In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.

Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement

Procedia PDF Downloads 117
1420 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 82
1419 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum

Procedia PDF Downloads 342
1418 Implications of Agricultural Subsidies Since Green Revolution: A Case Study of Indian Punjab

Authors: Kriti Jain, Sucha Singh Gill

Abstract:

Subsidies have been a major part of agricultural policies around the world, and more extensively since the green revolution in developing countries, for the sake of attaining higher agricultural productivity and achieving food security. But entrenched subsidies lead to distorted incentives and promote inefficiencies in the agricultural sector, threatening the viability of these very subsidies and sustainability of the agricultural production systems, posing a threat to the livelihood of farmers and laborers dependent on it. This paper analyzes the economic and ecological sustainability implications of prolonged input and output subsidies in agriculture by studying the case of Indian Punjab, an agriculturally developed state responsible for ensuring food security in the country when it was facing a major food crisis. The paper focuses specifically on the environmentally unsustainable cropping pattern changes as a result of Minimum Support Price (MSP) and assured procurement and on the resource use efficiency and cost implications of power subsidy for irrigation in Punjab. The study is based on an analysis of both secondary and primary data sources. Using secondary data, a time series analysis was done to capture the changes in Punjab’s cropping pattern, water table depth, fertilizer consumption, and electrification of agriculture. This has been done to examine the role of price and output support adopted to encourage the adoption of green revolution technology in changing the cropping structure of the state, resulting in increased input use intensities (especially groundwater and fertilizers), which harms the ecological balance and decreases factor productivity. Evaluation of electrification of Punjab agriculture helped evaluate the trend in electricity productivity of agriculture and how free power imposed further pressure on the extant agricultural ecosystem. Using data collected from a primary survey of 320 farmers in Punjab, the extent of wasteful application of groundwater irrigation, water productivity of output, electricity usage, and cost of irrigation driven electricity subsidy to the exchequer were estimated for the dominant cropping pattern amongst farmers. The main findings of the study revealed how because of a subsidy has driven agricultural framework, Punjab has lost area under agro climatically suitable and staple crops and moved towards a paddy-wheat cropping system, that is gnawing away the state’s natural resources like water table has been declining at a significant rate of 25 cms per year since 1975-76, and excessive and imbalanced fertilizer usage has led to declining soil fertility in the state. With electricity-driven tubewells as the major source of irrigation within a regime of free electricity and water-intensive crop cultivation, there is both wasteful application of irrigation water and electricity in the cultivation of paddy crops, burning an unproductive hole in the exchequer’s pocket. There is limited access to both agricultural extension services and water-conserving technology, along with policy imbalance, keeping farmers in an intensive and unsustainable production system. Punjab agriculture is witnessing diminishing returns to factor, which under the business-as-usual scenario, will soon enter the phase of negative returns to factor.

Keywords: cropping pattern, electrification, subsidy, sustainability

Procedia PDF Downloads 186
1417 Endometrioma Ethanol Sclerotherapy

Authors: Lamia Bensissaid

Abstract:

Goals: Endometriosis affects 6 to 10% of women of childbearing age. 17 to 44% of them have ovarian endometriomas. Medical and surgical treatments represent the two therapeutic axes with which PMA can be associated. Laparoscopic intraperitoneal ovarian cystectomy is described as the reference technique in the management of endometriomas by learned societies (CNGOF, ESHRE, NICE). However, it leads to a significant short-term reduction in the AMH level and the number of antral follicles, especially in cases of bilateral cystectomy, large cyst size or cystectomy after recurrence. Often, the disease is at an advanced stage with several surgical patients. Most have adhesions, which increase the risk of surgical complications and suboptimal resection and, therefore recurrence of the cyst. These results led to a change of opinion towards a conservative approach. Sclerotherapy is an old technique which acts by fibrinoid necrosis. It consists of injecting a sclerosing agent into the cyst cavity. Results : Recurrence was less than 15% for a 12-month follow-up; these rates are comparable to those of surgery. It does not seem to have a negative impact on ovarian reserve, but this is not sufficiently evaluated. It has an advantage in IVF pregnancy rates compared to cystectomy, particularly in cases of recurrent endometriomas. It has the advantages: · To be done on an outpatient basis. · To be inexpensive. · To avoid sometimes difficult and iterative surgery: · To allow an increase in pregnancy rates and the preservation of the ovarian reserve compared to iterative surgery. · of great interest in cases of bilateral endometriomas (kissing ovaries) or recurrent endometriomas. Conclusions: Ethanol sclerotherapy could be a good alternative to surgery.

Keywords: Endometrioma, Sclerotherapy, infertility, Ethanol

Procedia PDF Downloads 64
1416 Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics

Authors: Mohamed Abdelrahman Abdalla

Abstract:

Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions.

Keywords: communicating hydrocephalus, functions of the ventricles, idiopathic intracranial hypertension physics of CSF

Procedia PDF Downloads 106
1415 The Variation of the Inferior Gluteal Artery Origin

Authors: Waseem Al Talalwah, Shorok Al Dorazi, Roger Soames

Abstract:

The inferior gluteal artery is a prominent branch of the anterior trunk of internal iliac artery. It escapes from the pelvic cavity through the greater sciatic foramen below the lower edge of piriformis. In gluteal region, it provides several muscular branches to gluteal maximus and articular branch to hip joint. Further, it provides sciatic branch to sciatic nerve. Current study investigates the origin of the inferior gluteal artery of 41 cadavers in Centre for Anatomy and Human Identification, University of Dundee, UK. It arose from the anterior trunk in 37.5% independently and 45.7% dependently as with the internal pudendal artery. Therefore, it arose from the anterior trunk in 83.2%. However, it found to be as a branch of the posterior trunk of internal iliac artery in 7.7% which is either a direct branch in 6.2% as or indirect branch in 1.5%. Beside the inferior gluteal artery arose with internal pudendal artery as from GPT of anterior division in 45.7%, it arose from the GPT arising from the internal iliac artery bifurcation site in 1.5%. Further, the inferior gluteal artery arose from the trunk with internal pudendal and obturator arteries in 1.5% referred as obturatogluteopudendal trunk. Occasionally, it arose from the sciatic artery in 1.5%. In few cases, the inferior gluteal artery found to be congenital absence in 4.6% which is compensated by the persistent sciatic artery. Therefore, radiologists have to aware of the origin variability of the inferior gluteal artery to alert surgeons. Knowing the origin of the inferior gluteal artery may help the surgeons to avoid iatrogenic sciatic neuropathy in pelvic procedures such as removing prostate or of uterine fibroid. Further, it may also prevent avascular necrosis of femur neck as well as gluteal claudication.

Keywords: inferior gluteal artery, internal iliac artery, sciatic neuropathy, gluteal claudication

Procedia PDF Downloads 352
1414 Proposal for an Inspection Tool for Damaged Structures after Disasters

Authors: Karim Akkouche, Amine Nekmouche, Leyla Bouzid

Abstract:

This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing, and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (ingineer, expert, or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.

Keywords: .disaster, damaged structures, damage assessment, expert system

Procedia PDF Downloads 82
1413 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 75
1412 Development of AUTOSAR Software Components of MDPS System

Authors: Jae-Woo Kim, Kyung-Joong Lee, Hyun-Sik Ahn

Abstract:

This paper describes the development of a Motor-Driven Power Steering (MDPS) system using Automotive Open System Architecture (AUTOSAR) methodology. The MDPS system is a new power steering technology for vehicles and it can enhance driver’s convenience and fuel efficiency. AUTOSAR defines common standards for the implementation of embedded automotive software. Some aspects of safety and timing requirements are analyzed. Through the AUTOSAR methodology, the embedded software becomes more flexible, reusable and maintainable than ever. Hence, we first design software components (SW-C) for MDPS control based on AUTOSAR and implement SW-Cs for MDPS control using authoring tool following AUTOSAR standards.

Keywords: AUTOSAR, MDPS, simulink, software component

Procedia PDF Downloads 350
1411 Patented Free-Space Optical System for Auto Aligned Optical Beam Allowing to Compensate Mechanical Misalignments

Authors: Aurelien Boutin

Abstract:

In optical systems such as Variable Optical Delay Lines, where a collimated beam has to go back and forth, corner cubes are used in order to keep the reflected beam parallel to the incoming beam. However, the reflected beam can be laterally shifted, which will lead to losses. In this paper, we report on a patented optical design that allows keeping the reflected beam with the exact same position and direction whatever the displacement of the corner cube leading to zero losses. After explaining how the optical design works and theoretically allows to compensate for any defects in the translation of the corner cube, we will present the results of experimental comparisons between a standard layout (i.e., only corner cubes) and our optical layout. To compare both optical layouts, we used a fiber-to-fiber coupling setup. It consists of a couple of lights from one fiber to the other, thanks to two lenses. The ensemble [fiber+lense] is fixed and called a collimator so that the light is coupled from one collimator to another. Each collimator was precisely made in order to have a precise working distance. In the experiment, we measured and compared the Insertion Losses (IL) variations between both collimators with the distance between them (i.e., natural Gaussian beam coupling losses) and between both collimators in the different optical layouts tested, with the same optical length propagation. We will show that the IL variations of our setup are less than 0.05dB with respect to the IL variations of collimators alone.

Keywords: free-space optics, variable optical delay lines, optical cavity, auto-alignment

Procedia PDF Downloads 99
1410 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 87
1409 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi

Abstract:

In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control

Procedia PDF Downloads 670
1408 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 32
1407 Design of Visual Repository, Constraint and Process Modeling Tool Based on Eclipse Plug-Ins

Authors: Rushiraj Heshi, Smriti Bhandari

Abstract:

Master Data Management requires creation of Central repository, applying constraints on Repository and designing processes to manage data. Designing of Repository, constraints on repository and business processes is very tedious and time consuming task for large Enterprise. Hence Visual Repository, constraints and Process (Workflow) modeling is the most critical step in Master Data Management.In this paper, we realize a Visual Modeling tool for implementing Repositories, Constraints and Processes based on Eclipse Plugin using GMF/EMF which follows principles of Model Driven Engineering (MDE).

Keywords: EMF, GMF, GEF, repository, constraint, process

Procedia PDF Downloads 497
1406 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 348
1405 Tasting Terroir: A Gourmet Adventure in Food and Wine Tourism

Authors: Sunita Boro, Saurabh Kumar Dixit

Abstract:

Terroir, an intricate fusion of geography, climate, soil, and human expertise, has long been acknowledged as a defining factor in the character of wines and foods. This research embarks on an exploration of terroir's profound influence on gastronomic tourism, shedding light on the intricate interplay between the physical environment and culinary artistry. Delving into the intricate science of terroir, we scrutinize its role in shaping the sensory profiles of wines and foods, emphasizing the profound impact of specific regions on flavor, aroma, and texture. We deploy a multifaceted methodology, amalgamating sensory analysis, chemical profiling, geographical information systems, and qualitative interviews to unearth the nuanced nuances of terroir expression. Through an exhaustive review of the literature, we elucidate the historical roots of terroir, unveil the intricate cultural dimensions shaping it, and provide a comprehensive examination of prior studies in the field. Our findings underscore the pivotal role of terroir in promoting regional identities, enhancing the economic viability of locales, and attracting gastronomic tourists. The paper also dissects the marketing strategies employed to promote terroir-driven food and wine experiences. We elucidate the utilization of storytelling, branding, and collaborative endeavors in fostering a robust terroir-based tourism industry. This elucidates both the potential for innovation and the challenges posed by oversimplification or misrepresentation of terroir. Our research spotlights the intersection of terroir and sustainability, emphasizing the significance of environmentally conscious practices in terroir-driven productions. We discern the harmonious relationship between sustainable agriculture, terroir preservation, and responsible tourism, encapsulating the essence of ecological integrity in gastronomic tourism. Incorporating compelling case studies of regions and businesses excelling in the terroir-based tourism realm, we offer in-depth insights into successful models and strategies, with an emphasis on their replicability and adaptability to various contexts. Ultimately, this paper not only contributes to the scholarly understanding of terroir's role in the world of food and wine tourism but also provides actionable recommendations for stakeholders to leverage terroir's allure, preserve its authenticity, and foster sustainable and enriching culinary tourism experiences.

Keywords: terroir, food tourism, wine tourism, sustainability

Procedia PDF Downloads 60
1404 Ecolabelling : Normative Power or Corporate Strategy? : A Study Case of Textile Company in Indonesia

Authors: Suci Lestari Yuana, Shofi Fatihatun Sholihah, Derarika Ensta Jesse

Abstract:

Textile is one of buyer-driven industry which rely on label trust from the consumers. Most of textile manufacturers produce textile and textile products based on consumer demands. The company’s policy is highly depend on the dynamic evolution of consumers behavior. Recently, ecofriendly has become one of the most important factor of western consumers to purchase the textile and textile product (TPT) from the company. In that sense, companies from developing countries are encouraged to follow western consumers values. Some examples of ecolabel certificate are ISO (International Standard Organisation), Lembaga Ekolabel Indonesia (Indonesian Ecolabel Instution) and Global Ecolabel Network (GEN). The submission of national company to international standard raised a critical question whether this is a reflection towards the legitimation of global norms into national policy or it is actually a practical strategy of the company to gain global consumer. By observing one of the prominent textile company in Indonesia, this research is aimed to discuss what kind of impetus factors that cause a company to use ecolabel and what is the meaning behind it. Whether it comes from normative power or the strategy of the company. This is a qualitative research that choose a company in Sukoharjo, Central Java, Indonesia as a case study in explaining the pratice of ecolabelling by textitle company. Some deep interview is conducted with the company in order to get to know the ecolabelling process. In addition, this research also collected some document which related to company’s ecolabelling process and its impact to company’s value. The finding of the project reflected issues that concerned several issues: (1) role of media as consumer information (2) role of government and non-government actors as normative agency (3) role of company in social responsibility (4) the ecofriendly consciousness as a value of the company. As we know that environmental norms that has been admitted internationally has changed the global industrial process. This environmental norms also pushed the companies around the world, especially the company in Sukoharjo, Central Java, Indonesia to follow the norm. The neglection toward the global norms will remained the company in isolated and unsustained market that will harm the continuity of the company. So, in buyer-driven industry, the characteristic of company-consumer relations has brought a fast dynamic evolution of norms and values. The creation of global norms and values is circulated by passing national territories or identities.

Keywords: ecolabeling, waste management, CSR, normative power

Procedia PDF Downloads 306
1403 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: data grids, fault tolerance, clustering, chandy-lamport

Procedia PDF Downloads 341
1402 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 132
1401 Women-Hating Masculinities: How the Demand for Prostitution Fuels Sex Trafficking

Authors: Rosa M. Senent

Abstract:

Over the centuries, prostitution has been problematized from many sides, with women always at the center of the debate. However, prostitution is a gendered, demand-driven phenomenon. Thus, a focus must be put on the men who demand it, as an increasing number of studies have been done in the last few decades. The purpose of this paper is to expose how men's discourse online reveals the link between their demand for paid sex in prostitution and sex trafficking. The methodological tool employed was Critical Discourse Analysis (CDA). A critical analysis of sex buyers' discourse online showed that online communities of sex buyers are a useful tool in researching their behavior towards women, that their knowledge of sex trafficking and exploitation do not work as a deterrent for them to buy sex, and that the type of masculinity that sex buyers endorse is characterized by attitudes linked to the perpetuation of violence against women.

Keywords: masculinities, prostitution, sex trafficking, violence

Procedia PDF Downloads 139
1400 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial drawing, Visualization, Algorithm, Use of node-link diagrams

Procedia PDF Downloads 338
1399 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 55