Search results for: feature combination
3996 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: hough forest, active shape model, segmentation, cardiac left ventricle
Procedia PDF Downloads 3393995 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 1583994 Calibrating Risk Factors for Road Safety in Low Income Countries
Authors: Atheer Al-Nuaimi, Harry Evdorides
Abstract:
Daily, many individuals die or get harmed on streets around the globe, which requires more particular solutions for transport safety issues. International road assessment program (iRAP) is one of the models that are considering many variables which influence road user’s safety. In iRAP, roads have been partitioned into five-star ratings from 1 star (the most reduced level) to 5 star (the most noteworthy level). These levels are calculated from risk factors which represent the effect of the geometric and traffic conditions on rod safety. The result of iRAP philosophy are the countermeasures that can be utilized to enhance safety levels and lessen fatalities numbers. These countermeasures can be utilized independently as a single treatment or in combination with other countermeasures for a section or an entire road. There is a general understanding that the efficiency of a countermeasure is liable to reduction when it is used in combination with various countermeasures. That is, crash diminishment estimations of single countermeasures cannot be summed easily. In the iRAP model, the fatalities estimations are calculated using a specific methodology. However, this methodology suffers overestimations. Therefore, this study has developed a calibration method to estimate fatalities numbers more accurately.Keywords: crash risk factors, international road assessment program, low-income countries, road safety
Procedia PDF Downloads 1463993 Concomitant Exposure of Bacoside A and Bromelain Relieves Dichlorvos Toxicity in Mice Serum
Authors: Sonam Agarwal, Renu Bist
Abstract:
Current study emphasizes the toxic effects of dichlorvos on serum in terms of oxidative stress. Meanwhile, a protective action of bacoside A and bromelain was investigated against the biochemical alterations in serum. The experimental design included six groups of mice: saline was given as a vehicle to the control mice (group I). Mice belonging to groups II, III and IV, were administered with dichlorvos (40 mg/kg b.w.), bromelain and bacoside A, respectively. The fifth group received a combination of bromelain and bacoside A. In group VI, Bacoside A, and bromelain were administered 20 minutes prior to exposure of dichlorvos. Thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) level were used as biochemical test of toxic action for dichlorvos intoxication. Significantly increased TBARS and PCC level in second group suggests that dichlorvos enhances the production of free radicals in serum of mice (p< 0.05). Antioxidants treatment significantly decreased the levels of TBARS and PCC (p< 0.05). Dichlorvos administration causes a significant reduction in the level of CAT, SOD, GPx and GSH (p< 0.05) which was restored significantly by co-administration of bromelain and Bacoside A in dichlorvos exposed mice (p< 0.05). Treatment of bromelain and Bacoside A in combination served as better scavengers of toxicity induced by dichlorvos.Keywords: bacoside A, bromelain, dichlorvos, serum
Procedia PDF Downloads 3493992 Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin
Authors: Amjad I. Aqib, Shanza R. Khan, Tanveer Ahmad, Syed A. R. Shah, Muhammad A. Naseer, Muhammad Shoaib, Iqra Sarwar, Muhammad F. A. Kulyar, Zeeshan A. Bhutta, Mumtaz A. Khan, Mahboob Ali, Khadija Yasmeen
Abstract:
The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources.Keywords: antimicrobial resistance, dairy milk, nanoparticles, NSIDs, plant extracts, resistance modulation, S. aureus
Procedia PDF Downloads 2123991 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis
Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha
Abstract:
Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier
Procedia PDF Downloads 4673990 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1253989 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis
Authors: R. Rama Kishore, Sunesh
Abstract:
This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.Keywords: digital watermarking, discreate cosine transform, chaotic grid map, entropy
Procedia PDF Downloads 2523988 Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal
Authors: Mozhgan Mohammadi, Arezoo Ghadi
Abstract:
Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase.Keywords: black seed pulp, bio-sorbents, treatment of sorbents, adsorption isotherms
Procedia PDF Downloads 953987 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology
Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska
Abstract:
This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.Keywords: high temperature fly ash, fluidized bed combustion fly ash, pozzolan, CaO (calcium oxide), rheology
Procedia PDF Downloads 2053986 Transient Response of Elastic Structures Subjected to a Fluid Medium
Authors: Helnaz Soltani, J. N. Reddy
Abstract:
Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response
Procedia PDF Downloads 5673985 Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems
Authors: L. Kiefer, C. Richter, G. Reinhart
Abstract:
The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification.Keywords: agent systems, autonomous control, handling systems, identification
Procedia PDF Downloads 1773984 Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis
Authors: Chandragouda R. Patil, K. S. Jagadeesh, S. D. Kalolgi
Abstract:
Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops.Keywords: Rhizobium, Azospirillum, phosphate solubilizing bacteria, liquid formulation, benefit-cost ratio
Procedia PDF Downloads 4933983 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach
Authors: Kamalendu Pal
Abstract:
This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation
Procedia PDF Downloads 3673982 Vitamin D Supplementation Potentiates the Clinical Benefits of Metformin and Pioglitazone in Indian Women with Polycystic Ovary Syndrome
Authors: Mohd Asharf Ganie, Aafia Rashid, Mohd Afzal Zargar, Showkat Ali Zargar, Syed Mudasar, Tabasum Parvaiz, Zafar Amin Shah
Abstract:
Accumulating evidence suggests that Vitamin D deficiency (VDD) might at least contribute to the metabolic co-morbidities in PCOS. Hence, we aimed to study the effect of vitamin D supplementation in co-prescription with insulin sensitizers like metformin and pioglitazone on clinical, hormonal and metabolic parameters in women with PCOS. In this open label randomized, controlled trial a total of 120 women with PCOS diagnosis (AE-PCOS 2009 Criteria) were assigned to four treatment groups (n= 30 in each): group I (metformin 1 gm/day in combination with cholecalciferol 4000 IU/day), group II (pioglitazone 30 mg/day in combination with cholecalciferol 4000 IU/day), group III (metformin 1 gm /day) and group IV (pioglitazone 30 mg/day). Vitamin D supplementation was given as 60,000 units every two weeks for 24 weeks. All the subjects were routinely evaluated for clinical, biochemical, hormonal and insulin sensitivity parameters in addition to various safety parameters especially serum calcium levels at baseline and after 24 weeks of the treatment. Our results indicate that 95.5% of PCOS women were vitamin D deficient at baseline. Serum 25 (OH) D levels increased significantly (p < 0.001) in groups I and II without any adverse effects after 24 weeks of oral administration of 4000 IU cholecalciferol daily. However, serum 25 (OH) D levels remained unchanged in group III and IV. By six months, number of menstrual cycles per year increased whereas Ferriman-Gallwey score, serum total testosterone and HOMA-IR decreased significantly (P < 0.001) in the treatment groups supplemented with cholecalciferol as compared to those treated either drug alone. No significant beneficial changes were observed on weight, BMI, blood pressure, glucose tolerance and serum lipids in any of the groups supplemented with cholecalciferol. We conclude that daily dose of 4000 IU cholecalciferol might be a useful adjunct in complex treatment of PCOS with fewer adverse events. Furthermore, pioglitazone and cholecalciferol combination seems to be marginally better although there was no statistical significance.Keywords: PCOS, vitamin D supplementation, insulin resistance, spironolactone, metformin, pioglitazone
Procedia PDF Downloads 3813981 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality
Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard
Abstract:
Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus
Procedia PDF Downloads 5733980 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems
Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin
Abstract:
Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability
Procedia PDF Downloads 4483979 Antibacterial Activity of Trans-Cinnamaldehyde and Geraniol and Their Potential as Ingredients of Biocidal Polymers
Authors: Daria Olkiewicz, Maciej Walczak
Abstract:
In this paper, the biocidal effects of trans-cinnamaldehyde (a main component of cinnamon oil) and geraniol (a constituent of Pelargonium graveolens essential oil) are presented. The activity of the combination of trans-cinnamaldehyde and geraniol was tested against 3 bacterial strains: Staphylococcus aureus ATCC6538 (Gramm+), Escherichia coli ATCC8739 (Gramm-, Lac+) and Pseudomonas aeruginosa KKP 991(Gramm-, Lac-). The biocidal activity of trans-cinnamaldehyde-geraniol mixture against bacteria mentioned above was evaluated by disk-diffusion method. The model strains were exposed on 1, 2.5, 5 and 10 mg of trans-cinnamaldehyde-geraniol mixture per disk, and all strains were susceptible to this combination of plant compounds. For all microorganisms, also Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were estimated. For Staphylococcus aureus MIC was 0.0625 mg/ml of the trans-cinnamaldehyde and geraniol mixture, and MBC was 1.25 mg/ml; For Escherichia coli MIC=0.5 mg/ml, MBC=1 mg/ml, and finally Pseudomonas aeruginosa was inhibited in 0.5 mg/ml, and minimal biocidal concentration of tested mixture for it was 1.25 mg/ml. There are also reports about the synergistic working of trans-cinnamaldehyde and geraniol against microorganisms and the antimicrobial activity of polymers enriched with trans-cinnamaldehyde or geraniol, therefore the successful development and introduction to the today life of biocidal polymer enriched with trans-cinnamaldehyde and geraniol are possible.Keywords: antibacterial activity, biocidal polymers, geraniol, trans-cinnamaldehyde
Procedia PDF Downloads 1773978 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests
Authors: Mustafa Tufekci, Caner Guven
Abstract:
In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.Keywords: finite element analysis, sliding door mechanism, element type, structural analysis
Procedia PDF Downloads 3293977 Effects of Whole Body Vibration on Movement Variability Performing a Resistance Exercise with Different Ballasts and Rhythms
Authors: Sílvia tuyà Viñas, Bruno Fernández-Valdés, Carla Pérez-Chirinos, Monica Morral-Yepes, Lucas del Campo Montoliu, Gerard Moras Feliu
Abstract:
Some researchers stated that whole body vibration (WBV) generates postural destabilization, although there is no extensive research. Therefore, the aim of this study was to analyze movement variability when performing a half-squat with a different type of ballasts and rhythms with (V) and without (NV) WBV in male athletes using entropy. Twelve experienced in strength training males (age: 21.24 2.35 years, height: 176.83 5.80 cm, body mass: 70.63 8.58 kg) performed a half-squat with weighted vest (WV), dumbbells (D), and a bar with the weights suspended with elastic bands (B), in V and NV at 40 bpm and 60 bpm. Subjects performed one set of twelve repetitions of each situation, composed by the combination of the three factors. The movement variability was analyzed by calculating the Sample Entropy (SampEn) of the total acceleration signal recorded at the waist. In V, significant differences were found between D and WV (p<0.001; ES: 2.87 at 40 bpm; p<0.001; ES: 3.17 at 60 bpm) and between the B and WV at both rhythms (p<0.001; ES: 3.12 at 40 bpm; p<0.001; ES: 2.93 at 60 bpm) and a higher SampEn was obtained at 40 bpm with all ballasts (p<0.001; ES of WV: 1.22; ES of D: 4.49; ES of B: 4.03). No significant differences were found in NV. WBV is a disturbing and destabilizing stimulus. Strength and conditioning coaches should choose the combination of ballast and rhythm of execution according to the level and objectives of each athlete.Keywords: accelerometry, destabilization, entropy, movement variability, resistance training
Procedia PDF Downloads 1793976 Maternal Mind-Mindedness and Its Association with Attachment: The Case of Arab Infants and Mothers in Israel
Authors: Gubair Tarabeh, Ghadir Zriek, David Oppenheim, Avi Sagi-Schwartz, Nina Koren-Karie
Abstract:
Introduction: Mind-Mindedness (MM) focuses on mothers' attunement to their infant's mental states as reflected in their speech to the infant. Appropriate MM comments are associated with attachment security in individualistic Western societies where parents value their children’s autonomy and independence, and may therefore be more likely to engage in mind-related discourse with their children that highlights individual thoughts, preferences, emotions, and motivations. Such discourse may begin in early infancy, even before infants are likely to understand the semantic meaning of parental speech. Parents in collectivistic societies, by contrast, are thought to emphasize conforming to social norms more than individual goals, and this may lead to parent-child discourse that emphasizes appropriate behavior and compliance with social norms rather than internal mental states of the self and the other. Therefore, the examination of maternal MM and its relationship with attachment in Arab collectivistic culture in Israel was of particular interest. Aims of the study: The goal of the study was to examine whether the associations between MM and attachment in the Arab culture in Israel are the same as in Western samples. An additional goal was to examine whether appropriate and non-attuned MM comments could, together, distinguish among mothers of children in the different attachment classifications. Material and Methods: 76 Arab mothers and their infants between the ages of 12 and 18 months were observed in the Strange Situation Procedure (49 secure (B), 11 ambivalent (C), 14 disorganized (D), and 2 avoidant (A) infants). MM was coded from an 8-minute free-play sequence. Results: Mothers of B infants used more appropriate and less non-attuned MM comments than mothers of D infants, with no significant differences with mothers of C infants. Also, mothers of B infants used less non-attuned MM comments than both mothers of D infants and mothers of C infants. In addition, Mothers of B infants were most likely to show the combination of high appropriate and low non-attuned MM comments; Mothers of D infants were most likely to show the combination of high non-attuned and low appropriate MM comments; and a non-significant trend indicated that mothers of C infants were most likely to show a combination of high appropriate and high non-attuned MM comments. Conclusion: Maternal MM was associated with attachment in the Arab culture in Israel with combinations of appropriate and non-attuned MM comments distinguishing between different attachment classifications.Keywords: attachment, maternal mind-mindedness, Arab culture, collectivistic culture
Procedia PDF Downloads 1543975 Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa & Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats
Authors: Ginpreet Kaur, Mohammad Yasir Usmani, Mohammed Kamil Khan
Abstract:
Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment.Keywords: lipid levels, OGTT, diabetes, herbs, glucosidase
Procedia PDF Downloads 4303974 Phosphate Use Efficiency in Plants: A GWAS Approach to Identify the Pathways Involved
Authors: Azizah M. Nahari, Peter Doerner
Abstract:
Phosphate (Pi) is one of the essential macronutrients in plant growth and development, and it plays a central role in metabolic processes in plants, particularly photosynthesis and respiration. Limitation of crop productivity by Pi is widespread and is likely to increase in the future. Applications of Pi fertilizers have improved soil Pi fertility and crop production; however, they have also caused environmental damage. Therefore, in order to reduce dependence on unsustainable Pi fertilizers, a better understanding of phosphate use efficiency (PUE) is required for engineering nutrient-efficient crop plants. Enhanced Pi efficiency can be achieved by improved productivity per unit Pi taken up. We aim to identify, by using association mapping, general features of the most important loci that contribute to increased PUE to allow us to delineate the physiological pathways involved in defining this trait in the model plant Arabidopsis. As PUE is in part determined by the efficiency of uptake, we designed a hydroponic system to avoid confounding effects due to differences in root system architecture leading to differences in Pi uptake. In this system, 18 parental lines and 217 lines of the MAGIC population (a Multiparent Advanced Generation Inter-Cross) grown in high and low Pi availability conditions. The results showed revealed a large variation of PUE in the parental lines, indicating that the MAGIC population was well suited to identify PUE loci and pathways. 2 of 18 parental lines had the highest PUE in low Pi while some lines responded strongly and increased PUE with increased Pi. Having examined the 217 MAGIC population, considerable variance in PUE was found. A general feature was the trend of most lines to exhibit higher PUE when grown in low Pi conditions. Association mapping is currently in progress, but initial observations indicate that a wide variety of physiological processes are involved in influencing PUE in Arabidopsis. The combination of hydroponic growth methods and genome-wide association mapping is a powerful tool to identify the physiological pathways underpinning complex quantitative traits in plants.Keywords: hydroponic system growth, phosphate use efficiency (PUE), Genome-wide association mapping, MAGIC population
Procedia PDF Downloads 3213973 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 3543972 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4693971 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3243970 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 383969 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef
Authors: Messaoudi Mohammed Amin
Abstract:
The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing
Procedia PDF Downloads 3013968 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell
Authors: Hongjian Jia
Abstract:
A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval
Procedia PDF Downloads 1093967 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 334