Search results for: TIR domains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 880

Search results for: TIR domains

310 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 129
309 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 40
308 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 380
307 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 115
306 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 81
305 The Study of Self-Care Regarding to the Valuable Living in Thai Elderly

Authors: Pannathorn Chachvarat, Smarnjit Piromrun

Abstract:

Aging is the reality for the future world. An urgent priority for the development of the elderlies’ quality living is needed. The promotion of quality the elderly to live longer in their dignity and being independence are essential. The objective of this descriptive research was to study the self-care regarding to the valuable living in Thai elderly. The randomized sample was 100 elderly who live in Muang district of Phayao province. The tools included 2 parts; 1) Personal data (gender, age, income, occupation, marital status, living condition and disease), and 2) the self-care regarding to the valuable living questionnaire consisted of 3 domains, physical (21items), spiritual (13 items) and social domain (12 items). The content validity tool was tested the IOC ranged between 0.60 – 1.00 and the reliability test, Cronbach Alpha was 0.82. The research found that; The most participants were female (60 %), Farmer (37%), and underlying disease (65 %). The range of age was 68 years. Overall of the self-care regarding to the valuable living of physical, spiritual and social were at the high level.The highest level of physical activities was self-taking bath twice a day (morning and evening), and slept at least 5-6 hours at night time.The highest level of spirit activities was a good member of the family, contributions to persons in family, good emotion. Additionally were enjoyable, accepting changes in the body such as the dry skin and the blurred vision, accepting the roles and duties in taking care of house and grandchildren, selecting the applicable activities and practice according to religious Buddhateachingfor the happiness and meditated life.The highest of the social activities were the good relationship between other elderlies and family members, happy to help social activities as of their capacity, and being happy to help other people who have problems.

Keywords: self-care, valuable living, elderly, Thai

Procedia PDF Downloads 285
304 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 309
303 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis

Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw

Abstract:

Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.

Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network

Procedia PDF Downloads 462
302 The Competing Roles of Educator, Music Teacher, and Musician in Professional Identity Development: A Longitudinal Autoethnography

Authors: Thomas LaRocca

Abstract:

This study explores the development of a public-school music teacher’s professional identity within three domains: as an educator in the profession at large, as a music teacher in a school, and as a professional musician. An autoethnographic method is employed by calling upon undergraduate student teaching reflections, graduate writing assignments and presentations, cover letters for employment, professional correspondence, and reflective memos. These artifacts provide a reference for phenomenological insights into the values, hopes, and criticisms within each domain over time –all of which provide a window into the overall ontological perspective of one’s professional life at different moments in their career. While the topic of music teacher identity has been examined using autoethnographical methods before, by accessing materials over the course of ten years, the study is able to investigate the ‘how’ of identity development in a temporal context; from undergraduate student to established professional. Additionally, while the field offers a considerable amount of work surrounding the child and adolescent identity development, there are unmined opportunities to examine identity development in the adult years, especially surrounding adult professional life. Employing a postpositivist approach with social constructionism as a backdrop, this study examines adult identity formation and the contradictions, resonances, and priorities within each domain, between each domain, and perceived expectations of the professional community. What is revealed is a journey of self-improvement motivated by failure and success, marked by negotiation and sacrifice; as each domain competes for mental and temporal resources, identity is viewed as not just who one is, but also as what one leaves behind. These insights offer a window into the ontology of identity of a music educator and may provide considerations for differentiating professional development based on what stage educators are at in their careers.

Keywords: identity, longitudinal autoethnography, music teacher education, music teacher ontology

Procedia PDF Downloads 139
301 Electrochemical Growth and Properties of Cu2O Nanostructures

Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia

Abstract:

Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.

Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD

Procedia PDF Downloads 355
300 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis

Authors: Wenbo Du, Xiaomei Ma

Abstract:

With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.

Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression

Procedia PDF Downloads 146
299 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: avatar, dictionary, HamNoSys, hearing impaired, Indian sign language (ISL), sign language

Procedia PDF Downloads 230
298 Diabetes Prevalence and Quality of Life of Female Nursing Students in Riyadh

Authors: Alyaa Farouk AbdelFattah Ibrahim, Agnes Monica, Dolores I. Cabansag

Abstract:

The prevalence of diabetes mellitus is reaching epidemic proportions in many parts of the world causing an increasing public health concern. Cases of Type 2 diabetes are rapidly increasing in the Middle East region. Deprived of lifestyle deviations, a section of the Middle East’s inhabitants will be pretentious by 2035. As all sociocultural factors have created unhealthy lifestyles, which have become part of the social norms within Saudi society, thereby increased the prevalence of sedentary lifestyle and obesity in women living in Saudi Arabia. So, this study aimed to assess the impact of diabetes mellitus on quality of life of female nursing students in King Saud bin Abdulaziz University for Health Sciences, Riyadh. In a crossectional study design, 151 nursing students at King Saud bin Abdulaziz University for health sciences in Riyadh were included in the study. Biosociodemographic questionnaire and Short-Form 36 (SF-36) Health Related Quality of life Survey Arabic version were used for data collection, and all included students were screened for random blood glucose level. Results depicted that among 151 subjects included in the study 17 (11.3%) had diagnosed medical problems, and 29.4% of those participants with medical problems were diabetics. Univariate regression model for the relation between diabetes mellitus and overall percent score of SF-36 health survey domains showed no statistically significant difference between diabetic and non-diabetic subjects 0.990(0.931-1.053). In conclusion, although the diabetes prevalence was high among the study subjects it did not affect their quality of life may be due to age of the study population.

Keywords: diabetes mellitus, diabetes prevalence, quality of life, university students' health

Procedia PDF Downloads 181
297 Gaining Insight into Body Esteem through Time Perspective

Authors: Anthony Schmiedeler

Abstract:

Reliable measurements for body esteem and time perspective have been constructed to acquire additional knowledge into these two distinct and personal domains of individuals. The Body Esteem Scale (BES) assesses the multidimensional body self-esteems of males and females and produces a particular score. A higher BES score indicates an individual has strong positive feelings relating to particular aspects of the individual’s body. The Zimbardo Time Perspective Inventory (ZTPI) measures individuals’ time perspectives and identifies their dominant time perspective profiles. Higher scores in a time perspective profile, such as Past Positive (i.e., nostalgically remembering the past), suggest an individuals’ inclination toward that specific way of orienting oneself with respect to time. Both scales rely on measurements that are similarly grounded in personality traits and reveal valuable insight into individuals’ personalities. Studying the two scales could provide insight into a possible relationship and allow for a better comprehension and more nuanced understanding of the utilities of the instruments. In a completed study, 69 adults completed both the ZTPI and BES. Analyses show that adult females’ higher BES scores positively correlate with higher scores of the Past Positive and Present Hedonistic time perspective profiles of the ZTPI. Male participants also had higher overall BES scores positively correlate with the Present Hedonistic profile in addition to the Positive Future time perspective profile. The results of this study suggest that individuals with certain body esteem scores have a pattern of corresponding with certain time orientations. These correlations could help in explaining the rationales behind individuals’ varying levels of body esteem. With a foundation for better understanding of body esteem by incorporating these time perspectives, future research could be conducted to develop instruments that more accurately reflect individuals’ body esteem measurements.

Keywords: BES, body esteem, time perspective, ZTPI

Procedia PDF Downloads 123
296 Conceptualizing a Strategic Facilities Management Decision Framework for Heritage Building Maintenance Management

Authors: Adegoriola Mayowa I., Lai Joseph H. K., Yung Esther H. K., Chan Edwin H. K.

Abstract:

Heritage buildings (HBs) as structures with historical and architectural relevance that form an integral part of contemporary society. These buildings deserve to be protected for as long as possible to retain their significance. Therefore, the need to prioritize HB maintenance management is pertinent. However, the decision-making process of HBMM can be relatively daunting. The decision-making challenge may be attributed to the multiple 'stakeholders' expectation and requirement which needs to be met. To this end, professionals in the built environment have identified the need to apply the strategic concept of facilities management (FM) in decision making. Furthermore, the different maintenance dimensions have been applied to maintenance management of residential, commercial, and health facilities. Unfortunately, these different maintenance approaches, such as FM, sustainable FM, urban FM, green FM, and strategic FM, are yet to be fully explored in the decision-making process of HBMM. To bridge this gap, this study focuses on developing a framework for strategic decision-making HBMM, which helps achieve HBMM sustainability. At the study's inception, relevant works of literature in the domains of HBMM and FM were conducted. This review helped in the identification of contemporary maintenance practices and their applicability to HBMM. Afterward, a conceptual framework to aid decision-making in HBMM was developed. This framework integrated the concept of FM scope (people, place, process, and technology) while ensuring that decisions plans were made at strategic, tactical, and operational levels. Also, the different characteristics of HBs and stakeholders' requirements were considered in the framework. The conceptual framework presents a holistic guide for professionals in HBMM to ensure that decision processes and outcomes are practical and efficient. It also contributes to the existing body of knowledge on the integration of FM in HBMM. Furthermore, it will serve as a basis for future studies by applying the conceptualized framework in actual cases.

Keywords: decision-making, facility management, strategy, sustainability, heritage building, maintenance

Procedia PDF Downloads 138
295 Information Extraction for Short-Answer Question for the University of the Cordilleras

Authors: Thelma Palaoag, Melanie Basa, Jezreel Mark Panilo

Abstract:

Checking short-answer questions and essays, whether it may be paper or electronic in form, is a tiring and tedious task for teachers. Evaluating a student’s output require wide array of domains. Scoring the work is often a critical task. Several attempts in the past few years to create an automated writing assessment software but only have received negative results from teachers and students alike due to unreliability in scoring, does not provide feedback and others. The study aims to create an application that will be able to check short-answer questions which incorporate information extraction. Information extraction is a subfield of Natural Language Processing (NLP) where a chunk of text (technically known as unstructured text) is being broken down to gather necessary bits of data and/or keywords (structured text) to be further analyzed or rather be utilized by query tools. The proposed system shall be able to extract keywords or phrases from the individual’s answers to match it into a corpora of words (as defined by the instructor), which shall be the basis of evaluation of the individual’s answer. The proposed system shall also enable the teacher to provide feedback and re-evaluate the output of the student for some writing elements in which the computer cannot fully evaluate such as creativity and logic. Teachers can formulate, design, and check short answer questions efficiently by defining keywords or phrases as parameters by assigning weights for checking answers. With the proposed system, teacher’s time in checking and evaluating students output shall be lessened, thus, making the teacher more productive and easier.

Keywords: information extraction, short-answer question, natural language processing, application

Procedia PDF Downloads 428
294 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 195
293 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 118
292 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
291 The Happiness Pulse: A Measure of Individual Wellbeing at a City Scale, Development and Validation

Authors: Rosemary Hiscock, Clive Sabel, David Manley, Sam Wren-Lewis

Abstract:

As part of the Happy City Index Project, Happy City have developed a survey instrument to measure experienced wellbeing: how people are feeling and functioning in their everyday lives. The survey instrument, called the Happiness Pulse, was developed in partnership with the New Economics Foundation (NEF) with the dual aim of collecting citywide wellbeing data and engaging individuals and communities in the measurement and promotion of their own wellbeing. The survey domains and items were selected through a review of the academic literature and a stakeholder engagement process, including local policymakers, community organisations and individuals. The Happiness Pulse was included in the Bristol pilot of the Happy City Index (n=722). The experienced wellbeing items were subjected to factor analysis. A reduced number of items to be included in a revised scale for future data collection were again entered into a factor analysis. These revised factors were tested for reliability and validity. Among items to be included in a revised scale for future data collection three factors emerged: Be, Do and Connect. The Be factor had good reliability, convergent and criterion validity. The Do factor had good discriminant validity. The Connect factor had adequate reliability and good discriminant and criterion validity. Some age, gender and socioeconomic differentiation was found. The properties of a new scale to measure experienced wellbeing, intended for use by municipal authorities, are described. Happiness Pulse data can be combined with local data on wellbeing conditions to determine what matters for peoples wellbeing across a city and why.

Keywords: city wellbeing , community wellbeing, engaging individuals and communities, measuring wellbeing and happiness

Procedia PDF Downloads 261
290 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 8
289 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 105
288 Generation of Research Ideas Through a Matrix in the Field of International Comparative Education

Authors: Saleh Alzahrani

Abstract:

The studies in the field of International Comparative Education in the Arabic world and the middle east are scarcity. However, some International Comparative Education Researchers and post graduates face a challenge concerning of a selection of a distinguished study to improve their national education system. It requires a considerable effort. According to that, the matrix of scientific research in comparative and international education is designed to help specialists, researchers and graduate students in generating a variety of research ideas in a short time in this field. The matrix is built by using content analysis method of comparative education research published in the Arab journals from 1980 to 2017. Then, qualitative input with the in-depth focus analysis tool is utilized according to the root theory. The matrix consists of two axes; vertical (X) and horizontal (Y). The number of fields in the vertical axis are 6 domains, including 105 variables. The horizontal axis is two fields which are pre-university education that incorporate educational stages and contemporary formulations including (23) variables. The second field is the university education in its public universities and contemporary formulas including (15) variables. The researcher can access topics, ideas and research points through the matrix of scientific research in comparative and international education by selecting of any subject on the vertical axis (X) from (1) to (105) and selecting of any subject on the horizontal axis (Y) from (B) to (U). The cell where the axes intersect with the chosen fields can generate an idea or a research point conveniently and easily through the words that have been monitored by the user. These steps can be repeated to generate new ideas and research points. Many graduate researchers have been trained on using of this matrix which gave them more potential to generate an appropriate study serving the national education.

Keywords: content analysis method, comparative education, international education, matrix, root theory

Procedia PDF Downloads 133
287 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment

Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed

Abstract:

Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.

Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge

Procedia PDF Downloads 89
286 Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines

Authors: Mohammad Aladwan

Abstract:

Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis.

Keywords: Alzheimer's disease, dementia, tau protein, neurodegenration disease

Procedia PDF Downloads 100
285 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
284 Teaching Practices for Subverting Significant Retentive Learner Errors in Arithmetic

Authors: Michael Lousis

Abstract:

The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic throughout the development of the Kassel Project in England and Greece was accomplished. How much retentive these errors were over three-years in the officially provided school instruction of Arithmetic in these countries has also been shown. The learners’ errors in Arithmetic stemmed from a sample, which was comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. The sample was purposefully selected according to the students’ participation in each testing session in the development of the three-year project, in both domains simultaneously in Arithmetic and Algebra. Specific teaching practices have been invented and are presented in this study for subverting these learners’ errors, which were found out to be retentive to the level of the nationally provided mathematical education of each country. The invention and the development of these proposed teaching practices were founded on the rationality of the theoretical accounts concerning the explanation, prediction and control of the errors, on the conceptual metaphor and on an analysis, which tried to identify the required cognitive components and skills of the specific tasks, in terms of Psychology and Cognitive Science as applied to information-processing. The aim of the implementation of these instructional practices is not only the subversion of these errors but the achievement of the mathematical competence, as this was defined to be constituted of three elements: appropriate representations - appropriate meaning - appropriately developed schemata. However, praxis is of paramount importance, because there is no independent of science ‘real-truth’ and because praxis serves as quality control when it takes the form of a cognitive method.

Keywords: arithmetic, cognitive science, cognitive psychology, information-processing paradigm, Kassel project, level of the nationally provided mathematical education, praxis, remedial mathematical teaching practices, retentiveness of errors

Procedia PDF Downloads 316
283 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 199
282 The Executive Functioning Profile of Children and Adolescents with a Diagnosis of OCD: A Systematic Review and Meta-Analysis

Authors: Parker Townes, Aisouda Savadlou, Shoshana Weiss, Marina Jarenova, Suzzane Ferris, Dan Devoe, Russel Schachar, Scott Patten, Tomas Lange, Marlena Colasanto, Holly McGinn, Paul Arnold

Abstract:

Some research suggests obsessive-compulsive disorder (OCD) is associated with impaired executive functioning: higher-level mental processes involved in carrying out tasks and solving problems. Relevant literature was identified systematically through online databases. Meta-analyses were conducted for task performance metrics reported by at least two articles. Results were synthesized by the executive functioning domain measured through each performance metric. Heterogeneous literature was identified, typically involving few studies using consistent measures. From 29 included studies, analyses were conducted on 33 performance metrics from 12 tasks. Results suggest moderate associations of working memory (two out of five tasks presented significant findings), planning (one out of two tasks presented significant findings), and visuospatial abilities (one out of two tasks presented significant findings) with OCD in youth. There was inadequate literature or contradictory findings for other executive functioning domains. These findings suggest working memory, planning, and visuospatial abilities are impaired in pediatric OCD, with mixed results. More work is needed to identify the effect of age and sex on these results. Acknowledgment: This work was supported by the Alberta Innovates Translational Health Chair in Child and Youth Mental Health. The funders had no role in the design, conducting, writing, or decision to submit this article for publication.

Keywords: obsessive-compulsive disorder, neurocognition, executive functioning, adolescents, children

Procedia PDF Downloads 99
281 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 123