Search results for: text preprocessing
1432 Structural Analysis of Kamaluddin Behzad's Works Based on Roland Barthes' Theory of Communication, 'Text and Image'
Authors: Mahsa Khani Oushani, Mohammad Kazem Hasanvand
Abstract:
Text and image have always been two important components in Iranian layout. The interactive connection between text and image has shaped the art of book design with multiple patterns. In this research, first the structure and visual elements in the research data were analyzed and then the position of the text element and the image element in relation to each other based on Roland Barthes theory on the three theories of text and image, were studied and analyzed and the results were compared, and interpreted. The purpose of this study is to investigate the pattern of text and image in the works of Kamaluddin Behzad based on three Roland Barthes communication theories, 1. Descriptive communication, 2. Reference communication, 3. Matched communication. The questions of this research are what is the relationship between text and image in Behzad's works? And how is it defined according to Roland Barthes theory? The method of this research has been done with a structuralist approach with a descriptive-analytical method in a library collection method. The information has been collected in the form of documents (library) and is a tool for collecting online databases. Findings show that the dominant element in Behzad's drawings is with the image and has created a reference relationship in the layout of the drawings, but in some cases it achieves a different relationship that despite the preference of the image on the page, the text is dispersed proportionally on the page and plays a more active role, played within the image. The text and the image support each other equally on the page; Roland Barthes equates this connection.Keywords: text, image, Kamaluddin Behzad, Roland Barthes, communication theory
Procedia PDF Downloads 1931431 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides
Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney
Abstract:
Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis
Procedia PDF Downloads 3281430 Intertextuality in Choreography: Investigation of Text and Movements in Making Choreography
Authors: Muhammad Fairul Azreen Mohd Zahid
Abstract:
Speech, text, and movement intensify aspects of creating choreography by connecting with emotional entanglements, tradition, literature, and other texts. This research focuses on the practice as research that will prioritise the choreography process as an inquiry approach. With the driven context, the study intervenes in critical conjunctions of choreographic theory, bringing together new reflections on the moving body, spaces of action, as well as intertextuality between text and movements in making choreography. Throughout the process, the researcher will introduce the level of deliberation from speech through movements and text to express emotion within a narrative context of an “illocutionary act.” This practice as research will produce a different meaning from the “utterance text” to “utterance movements” in the perspective of speech acts theory by J.L Austin based on fragmented text from “pidato adat” which has been used as opening speech in Randai. Looking at the theory of deconstruction by Jacque Derrida also will give a different meaning from the text. Nevertheless, the process of creating the choreography will also help to lay the basic normative structure implicit in “constative” (statement text/movement) and “performative” (command text/movement). Through this process, the researcher will also look at several methods of using text from two works by Joseph Gonzales, “Becoming King-The Pakyung Revisited” and Crystal Pite's “The Statement,” as references to produce different methods in making choreography. The perspective from the semiotic foundation will support how occurrences within dance discourses as texts through a semiotic lens. The method used in this research is qualitative, which includes an interview and simulation of the concept to get an outcome.Keywords: intertextuality, choreography, speech act, performative, deconstruction
Procedia PDF Downloads 991429 Written Argumentative Texts in Elementary School: The Development of Text Structure and Its Relation to Reading Comprehension
Authors: Sara Zadunaisky Ehrlich, Batia Seroussi, Anat Stavans
Abstract:
Text structure is a parameter of text quality. This study investigated the structure of written argumentative texts produced by elementary school age children. We set two objectives: to identify and trace the structural components of the argumentative texts and to investigate whether reading comprehension skills were correlated with text structure. 293 school children from 2nd to 5th grades were asked to write two argumentative texts about informal or everyday life controversial topics and completed two reading tasks that targeted different levels of text comprehension. The findings indicated, on the one hand, significant developmental differences between mature and more novice writers in terms of text length and mean proportion of clauses produced for a better elaboration of the different text components. On the other hand, with certain fluctuations, no meaningful differences were found in terms of presence of text structure: at all grade levels, elementary school children produced the basic and minimal structure that included the writer's argument and reasons or arguments' supports. Counter-arguments were scarce even in the upper grades. While the children captured that essentially an argument must be justified, the more the number of supports produced, the fewer the clauses the children produced. Last, weak to mild relations were found between reading comprehension and argumentative text structure. Nevertheless, children who scored higher on sophisticated questions that require inferential or world knowledge displayed more elaborated structures in terms of text length and size of supports to the writer's argument. These findings indicate how school-age children perceive the basic template of an argument with future implications regarding how to elaborate written arguments.Keywords: argumentative text, text structure, elementary school children, written argumentations
Procedia PDF Downloads 1681428 The Morphology of Sri Lankan Text Messages
Authors: Chamindi Dilkushi Senaratne
Abstract:
Communicating via a text or an SMS (Short Message Service) has become an integral part of our daily lives. With the increase in the use of mobile phones, text messaging has become a genre by itself worth researching and studying. It is undoubtedly a major phenomenon revealing language change. This paper attempts to describe the morphological processes of text language of urban bilinguals in Sri Lanka. It will be a typological study based on 500 English text messages collected from urban bilinguals residing in Colombo. The messages are selected by categorizing the deviant forms of language use apparent in text messages. These stylistic deviations are a deliberate skilled performance by the users of the language possessing an in-depth knowledge of linguistic systems to create new words and thereby convey their linguistic identity and individual and group solidarity via the message. The findings of the study solidifies arguments that the manipulation of language in text messages is both creative and appropriate. In addition, code mixing theories will be used to identify how existing morphological processes are adapted by bilingual users in Sri Lanka when texting. The study will reveal processes such as omission, initialism, insertion and alternation in addition to other identified linguistic features in text language. The corpus reveals the most common morphological processes used by Sri Lankan urban bilinguals when sending texts.Keywords: bilingual, deviations, morphology, texts
Procedia PDF Downloads 2711427 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 5901426 Video Text Information Detection and Localization in Lecture Videos Using Moments
Authors: Belkacem Soundes, Guezouli Larbi
Abstract:
This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.Keywords: text detection, text localization, lecture videos, pseudo zernike moments
Procedia PDF Downloads 1531425 Intonation Salience as an Underframe to Text Intonation Models
Authors: Tatiana Stanchuliak
Abstract:
It is common knowledge that intonation is not laid over a ready text. On the contrary, intonation forms and accompanies the text on the level of its birth in the speaker’s mind. As a result, intonation plays one of the fundamental roles in the process of transferring a thought into external speech. Intonation structure can highlight the semantic significance of textual elements and become a ranging mark in understanding the information structure of the text. Intonation functions by means of prosodic characteristics, one of which is intonation salience, whose function in texts results in making some textual elements more prominent than others. This function of intonation, therefore, performs as organizing. It helps to form the frame of key elements of the text. The study under consideration made an attempt to look into the inner nature of salience and create a sort of a text intonation model. This general goal brought to some more specific intermediate results. First, there were established degrees of salience on the level of the smallest semantic element - intonation group, as well as prosodic means of creating salience, were examined. Second, the most frequent combinations of prosodic means made it possible to distinguish patterns of salience, which then became constituent elements of a text intonation model. Third, the analysis of the predicate structure allowed to divide the whole text into smaller parts, or units, which performed a specific function in the developing of the general communicative intention. It appeared that such units can be found in any text and they have common characteristics of their intonation arrangement. These findings are certainly very important both for the theory of intonation and their practical application.Keywords: accentuation , inner speech, intention, intonation, intonation functions, models, patterns, predicate, salience, semantics, sentence stress, text
Procedia PDF Downloads 2671424 Distorted Document Images Dataset for Text Detection and Recognition
Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan
Abstract:
With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.Keywords: document analysis, open dataset, optical character recognition, text detection
Procedia PDF Downloads 1751423 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 471422 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 1311421 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 881420 Towards Logical Inference for the Arabic Question-Answering
Authors: Wided Bakari, Patrice Bellot, Omar Trigui, Mahmoud Neji
Abstract:
This article constitutes an opening to think of the modeling and analysis of Arabic texts in the context of a question-answer system. It is a question of exceeding the traditional approaches focused on morphosyntactic approaches. Furthermore, we present a new approach that analyze a text in order to extract correct answers then transform it to logical predicates. In addition, we would like to represent different levels of information within a text to answer a question and choose an answer among several proposed. To do so, we transform both the question and the text into logical forms. Then, we try to recognize all entailment between them. The results of recognizing the entailment are a set of text sentences that can implicate the user’s question. Our work is now concentrated on an implementation step in order to develop a system of question-answering in Arabic using techniques to recognize textual implications. In this context, the extraction of text features (keywords, named entities, and relationships that link them) is actually considered the first step in our process of text modeling. The second one is the use of techniques of textual implication that relies on the notion of inference and logic representation to extract candidate answers. The last step is the extraction and selection of the desired answer.Keywords: NLP, Arabic language, question-answering, recognition text entailment, logic forms
Procedia PDF Downloads 3431419 The Composer’s Hand: An Analysis of Arvo Pärt’s String Orchestral Work, Psalom
Authors: Mark K. Johnson
Abstract:
Arvo Pärt has composed over 80 text-based compositions based on nine different languages. But prior to 2015, it was not publicly known what texts the composer used in composing a number of his non-vocal works, nor the language of those texts. Because of this lack of information, few if any musical scholars have illustrated in any detail how textual structure applies to any of Pärt’s instrumental compositions. However, in early 2015, the Arvo Pärt Centre in Estonia published In Principio, a compendium of the texts Pärt has used to derive many of the parameters of his text-based compositions. This paper provides the first detailed analysis of the relationship between structural aspects of the Church Slavonic Eastern Orthodox text of Psalm 112 and the musical parameters that Pärt used when composing the string orchestral work Psalom. It demonstrates that Pärt’s text-based compositions are carefully crafted works, and that evidence of the presence of the ‘invisible’ hand of the composer can be found within every aspect of the underpinning structures, at the more elaborate middle ground level, and even within surface aspects of these works. Based on the analysis of Psalom, it is evident that the text Pärt selected for Psalom informed many of his decisions regarding the musical structures, parameters and processes that he deployed in composing this non-vocal text-based work. Many of these composerly decisions in relation to these various aspects cannot be fathomed without access to, and an understanding of, the text associated with the work.Keywords: Arvo Pärt, minimalism, psalom, text-based process music
Procedia PDF Downloads 2341418 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 1071417 N400 Investigation of Semantic Priming Effect to Symbolic Pictures in Text
Authors: Thomas Ousterhout
Abstract:
The purpose of this study was to investigate if incorporating meaningful pictures of gestures and facial expressions in short sentences of text could supplement the text with enough semantic information to produce and N400 effect when probe words incongruent to the picture were subsequently presented. Event-related potentials (ERPs) were recorded from a 14-channel commercial grade EEG headset while subjects performed congruent/incongruent reaction time discrimination tasks. Since pictures of meaningful gestures have been shown to be semantically processed in the brain in a similar manner as words are, it is believed that pictures will add supplementary information to text just as the inclusion of their equivalent synonymous word would. The hypothesis is that when subjects read the text/picture mixed sentences, they will process the images and words just like in face-to-face communication and therefore probe words incongruent to the image will produce an N400.Keywords: EEG, ERP, N400, semantics, congruency, facilitation, Emotiv
Procedia PDF Downloads 2591416 Electroencephalogram during Natural Reading: Theta and Alpha Rhythms as Analytical Tools for Assessing a Reader’s Cognitive State
Authors: D. Zhigulskaya, V. Anisimov, A. Pikunov, K. Babanova, S. Zuev, A. Latyshkova, K. Сhernozatonskiy, A. Revazov
Abstract:
Electrophysiology of information processing in reading is certainly a popular research topic. Natural reading, however, has been relatively poorly studied, despite having broad potential applications for learning and education. In the current study, we explore the relationship between text categories and spontaneous electroencephalogram (EEG) while reading. Thirty healthy volunteers (mean age 26,68 ± 1,84) participated in this study. 15 Russian-language texts were used as stimuli. The first text was used for practice and was excluded from the final analysis. The remaining 14 were opposite pairs of texts in one of 7 categories, the most important of which were: interesting/boring, fiction/non-fiction, free reading/reading with an instruction, reading a text/reading a pseudo text (consisting of strings of letters that formed meaningless words). Participants had to read the texts sequentially on an Apple iPad Pro. EEG was recorded from 12 electrodes simultaneously with eye movement data via ARKit Technology by Apple. EEG spectral amplitude was analyzed in Fz for theta-band (4-8 Hz) and in C3, C4, P3, and P4 for alpha-band (8-14 Hz) using the Friedman test. We found that reading an interesting text was accompanied by an increase in theta spectral amplitude in Fz compared to reading a boring text (3,87 µV ± 0,12 and 3,67 µV ± 0,11, respectively). When instructions are given for reading, we see less alpha activity than during free reading of the same text (3,34 µV ± 0,20 and 3,73 µV ± 0,28, respectively, for C4 as the most representative channel). The non-fiction text elicited less activity in the alpha band (C4: 3,60 µV ± 0,25) than the fiction text (C4: 3,66 µV ± 0,26). A significant difference in alpha spectral amplitude was also observed between the regular text (C4: 3,64 µV ± 0,29) and the pseudo text (C4: 3,38 µV ± 0,22). These results suggest that some brain activity we see on EEG is sensitive to particular features of the text. We propose that changes in theta and alpha bands during reading may serve as electrophysiological tools for assessing the reader’s cognitive state as well as his or her attitude to the text and the perceived information. These physiological markers have prospective practical value for developing technological solutions and biofeedback systems for reading in particular and for education in general.Keywords: EEG, natural reading, reader's cognitive state, theta-rhythm, alpha-rhythm
Procedia PDF Downloads 801415 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1091414 Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools
Authors: Andriana Mkrtchyan, Vahe Khlghatyan
Abstract:
The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology.Keywords: color psychology, data acquisition/extraction, data augmentation, disambiguation, natural language processing, outlier detection, semantic similarity, text-mining, user evaluation, visual search
Procedia PDF Downloads 791413 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation
Authors: Mario Kubek, Herwig Unger
Abstract:
Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation
Procedia PDF Downloads 2831412 Binarization and Recognition of Characters from Historical Degraded Documents
Authors: Bency Jacob, S.B. Waykar
Abstract:
Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.Keywords: binarization, denoising, global thresholding, local thresholding, thresholding
Procedia PDF Downloads 3451411 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States
Authors: Jarek Krajewski, David Daxberger, Luzi Beyer
Abstract:
Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.Keywords: heart rate, PTSD, PPGI, stress, preprocessing
Procedia PDF Downloads 1251410 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 1251409 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection
Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye
Abstract:
Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.Keywords: connected-component, projection-profile, segmentation, text-line
Procedia PDF Downloads 1241408 Glossematics and Textual Structure
Authors: Abdelhadi Nadjer
Abstract:
The structure of the text to the systemic school -(glossématique-Helmslev). At the beginning of the note we have a cursory look around the concepts of general linguistics The science that studies scientific study of human language based on the description and preview the facts away from the trend of education than we gave a detailed overview the founder of systemic school and most important customers and more methods and curriculum theory and analysis they extend to all humanities, practical action each offset by a theoretical and the procedure can be analyzed through the elements that pose as another method we talked to its links with other language schools where they are based on the sharp criticism of the language before and deflected into consideration for the field of language and its erection has outside or language network and its participation in the actions (non-linguistic) and after that we started our Valglosamatik analytical structure of the text is ejected text terminal or all of the words to was put for expression. This text Negotiable divided into types in turn are divided into classes and class should not be carrying a contradiction and be inclusive. It is on the same materials as described relationships that combine language and seeks to describe their relations and identified.Keywords: text, language schools, linguistics, human language
Procedia PDF Downloads 4591407 We Wonder If They Mind: An Empirical Inquiry into the Narratological Function of Mind Wandering in Readers of Literary Texts
Authors: Tina Ternes, Florian Kleinau
Abstract:
The study investigates the content and triggers of mind wandering (MW) in readers of fictional texts. It asks whether readers’ MW is productive (text-related) or unproductive (text-unrelated). Methodologically, it bridges the gap between narratological and data-driven approaches by utilizing a sentence-by-sentence self-paced reading paradigm combined with thought probes in the reading of an excerpt of A. L. Kennedy’s “Baby Blue”. Results show that the contents of MW can be linked to text properties. We validated the role of self-reference in MW and found prediction errors to be triggers of MW. Results also indicate that the content of MW often travels along the lines of the text at hand and can thus be viewed as productive and integral to interpretation.Keywords: narratology, mind wandering, reading fiction, meta cognition
Procedia PDF Downloads 821406 Incorporating Information Gain in Regular Expressions Based Classifiers
Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler
Abstract:
A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.Keywords: information gain, regular expressions, smith-waterman algorithm, text classification
Procedia PDF Downloads 3211405 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 2351404 Resource Creation Using Natural Language Processing Techniques for Malay Translated Qur'an
Authors: Nor Diana Ahmad, Eric Atwell, Brandon Bennett
Abstract:
Text processing techniques for English have been developed for several decades. But for the Malay language, text processing methods are still far behind. Moreover, there are limited resources, tools for computational linguistic analysis available for the Malay language. Therefore, this research presents the use of natural language processing (NLP) in processing Malay translated Qur’an text. As the result, a new language resource for Malay translated Qur’an was created. This resource will help other researchers to build the necessary processing tools for the Malay language. This research also develops a simple question-answer prototype to demonstrate the use of the Malay Qur’an resource for text processing. This prototype has been developed using Python. The prototype pre-processes the Malay Qur’an and an input query using a stemming algorithm and then searches for occurrences of the query word stem. The result produced shows improved matching likelihood between user query and its answer. A POS-tagging algorithm has also been produced. The stemming and tagging algorithms can be used as tools for research related to other Malay texts and can be used to support applications such as information retrieval, question answering systems, ontology-based search and other text analysis tasks.Keywords: language resource, Malay translated Qur'an, natural language processing (NLP), text processing
Procedia PDF Downloads 3201403 Method of Complex Estimation of Text Perusal and Indicators of Reading Quality in Different Types of Commercials
Authors: Victor N. Anisimov, Lyubov A. Boyko, Yazgul R. Almukhametova, Natalia V. Galkina, Alexander V. Latanov
Abstract:
Modern commercials presented on billboards, TV and on the Internet contain a lot of information about the product or service in text form. However, this information cannot always be perceived and understood by consumers. Typical sociological focus group studies often cannot reveal important features of the interpretation and understanding information that has been read in text messages. In addition, there is no reliable method to determine the degree of understanding of the information contained in a text. Only the fact of viewing a text does not mean that consumer has perceived and understood the meaning of this text. At the same time, the tools based on marketing analysis allow only to indirectly estimate the process of reading and understanding a text. Therefore, the aim of this work is to develop a valid method of recording objective indicators in real time for assessing the fact of reading and the degree of text comprehension. Psychophysiological parameters recorded during text reading can form the basis for this objective method. We studied the relationship between multimodal psychophysiological parameters and the process of text comprehension during reading using the method of correlation analysis. We used eye-tracking technology to record eye movements parameters to estimate visual attention, electroencephalography (EEG) to assess cognitive load and polygraphic indicators (skin-galvanic reaction, SGR) that reflect the emotional state of the respondent during text reading. We revealed reliable interrelations between perceiving the information and the dynamics of psychophysiological parameters during reading the text in commercials. Eye movement parameters reflected the difficulties arising in respondents during perceiving ambiguous parts of text. EEG dynamics in rate of alpha band were related with cumulative effect of cognitive load. SGR dynamics were related with emotional state of the respondent and with the meaning of text and type of commercial. EEG and polygraph parameters together also reflected the mental difficulties of respondents in understanding text and showed significant differences in cases of low and high text comprehension. We also revealed differences in psychophysiological parameters for different type of commercials (static vs. video, financial vs. cinema vs. pharmaceutics vs. mobile communication, etc.). Conclusions: Our methodology allows to perform multimodal evaluation of text perusal and the quality of text reading in commercials. In general, our results indicate the possibility of designing an integral model to estimate the comprehension of reading the commercial text in percent scale based on all noticed markers.Keywords: reading, commercials, eye movements, EEG, polygraphic indicators
Procedia PDF Downloads 166