Search results for: structural defect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4664

Search results for: structural defect

4634 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 262
4633 The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline

Authors: W. Wang, Y. Zhang, J. Shuai, Z. Lv

Abstract:

The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed.

Keywords: pipeline, adjacent defects, interaction between defects, failure pressure

Procedia PDF Downloads 222
4632 Effect of Non-metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Miroslaw Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross-section was 0.531 [mm] in width and 1.523 [mm] in length; the defect was continuous along the entire axis of the bolt. In analysis, a FEM simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia PDF Downloads 156
4631 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
4630 Homogeneous Anti-Corrosion Coating of Spontaneously Dissolved Defect-Free Graphene

Authors: M. K. Bin Subhan, P. Cullen, C. Howard

Abstract:

A recent study by the World Corrosion Organization estimated that corrosion related damage causes $2.5tr worth of damage every year. As such, a low cost easily scalable solution is required to the corrosion problem which is economically viable. Graphene is an ideal anti-corrosion barrier layer material due to its excellent barrier properties and chemical stability, which makes it impermeable to all molecules. However, attempts to employ graphene as a barrier layer has been hampered by the fact that defect sites in graphene accelerate corrosion due to the inert nature of graphene which promotes galvanic corrosion at the expense of the metal. The recent discovery of spontaneous dissolution of charged graphite intercalation compounds in aprotic solvents enables defect free graphene platelets to be employed for anti-corrosion applications. These ‘inks’ of defect-free charged graphene platelets in solution can be coated onto a metallic surfaces via electroplating to form a homogeneous barrier layer. In this paper, initial data showing homogeneous coatings of graphene barrier layers on steel coupons via electroplating will be presented. This easily scalable technique also provides a controllable method for applying different barrier thicknesses from ultra thin layers to thick opaque coatings making it useful for a wide range of applications.

Keywords: anti-corrosion, defect-free, electroplating, graphene

Procedia PDF Downloads 131
4629 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 93
4628 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 258
4627 High Piezoelectric and Magnetic Performance Achieved in the Lead-free BiFeO3-BaTiO3 Cceramics by Defect Engineering

Authors: Muhammad Habib, Xuefan Zhou, Lin Tang, Guoliang Xue, Fazli Akram, Dou Zhang

Abstract:

Defect engineering approach is a well-established approach for the customization of functional properties of perovskite ceramics. In modern technology, the high multiferroic properties for elevated temperature applications are greatly demanding. In this work, the Bi-nonstoichiometric lead-free 0.67Biy-xSmxFeO3-0.33BaTiO3 ceramics (Sm-doped BF-BT for Bi-excess; y = 1.03 and Bi-deficient; y = 0.975 with x = 0.00, 0.04 and 0.08) were design for the high-temperature multiferroic property. Enhanced piezoelectric (d33  250 pC/N and d33* 350 pm/V) and magnetic properties (Mr  0.25 emu/g) with a high Curie temperature (TC  465 ℃) were obtained in the Bi-deficient pure BF-BT ceramics. With Sm-doping (x = 0.04), the TC decrease to 350 ℃ a significant improvement occurred in the d33* to 504 pm/V and 450 pm/V for Bi-excess and Bi-deficient compositions, respectively. The structural origin of the enhanced piezoelectric strain performance is related to the soft ferroelectric effect by Sm-doping and reversible phase transition from the short-range relaxor ferroelectric state to the long-range order under the applied electric field. However, a slight change occurs in the Mr 0.28 emu/g value with Sm-doping for Bi-deficient ceramics, whereas the Bi-excess ceramics shows completely paramagnetic behavior. Hence, the origin of high magnetic properties in the Bi-deficient BF-BT ceramics is mainly attributed to the proposed double exchange mechanism. We believe that this strategy will provide a new perspective for the development of lead-free multiferroic ceramics for high-temperature applications.

Keywords: BiFeO3-BaTiO3, lead-free piezoceramics, magnetic properties, defect engineering

Procedia PDF Downloads 134
4626 PD Test in Gas Insulated Substation Using UHF Method

Authors: T. Prabakaran

Abstract:

Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance.

Keywords: gas insulated substation, partial discharge, free moving particle defect, particle fixed on cone defect, ultra high frequency method

Procedia PDF Downloads 246
4625 Microstructure and SEM Analysis of Joints Fabricated by FSW of Aluminum Alloys 5083 and 6063

Authors: Jaskirat Singh, Roshan Lal Virdi, Khushdeep Goyal

Abstract:

The purpose of this paper is to perform a microstructural analysis of Friction Stir Welded joints of aluminum alloys 6063 and 5083, also to check the properties of the weld zone by SEM analysis. FSW experiments were carried on CNC Vertical milling machine. The tools used for welding were the round cylindrical pin shape and square pin shape. It is found that Microstructure shows the uniformly distributed material with minimum heat affected zone and dense welded zone without any defect. Microstructures indicate that the weld material is defect free. The SEM shows the diffusion of material with base metal with proper bonding without any defect.

Keywords: friction stir welding, aluminum alloy, microstructure, SEM analysis

Procedia PDF Downloads 308
4624 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 451
4623 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 325
4622 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids

Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann

Abstract:

In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.

 

Keywords: defect evaluation, EMAT, mechanical testing, thermography

Procedia PDF Downloads 421
4621 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature

Authors: Mohannad N. H. Al-Malichi

Abstract:

Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.

Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets

Procedia PDF Downloads 120
4620 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 384
4619 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329
4618 Horizontal Bone Augmentation Using Two Membranes at Dehisced Implant Sites: A Randomized Clinical Study

Authors: Monika Bansal

Abstract:

Background: Placement of dental implant in narrow alveolar ridge is challenging to be treated. GBR procedure is currently most widely used to augment the deficient alveolar ridges and to treat the fenestration and dehiscence around dental implants. Thus, the objectives of the present study were to evaluate as well as compare the clinical performance of collagen membrane and titanium mesh for horizontal bone augmentation at dehisced implant sites. Methods and material: Total 12 single edentulous implant sites with buccal bone deficiency in 8 subjects were equally divided and treated simultaneously with either of the two membranes and DBBM(Bio-Oss) bone graft. Primary outcome measurements in terms of defect height and defect width were made using a calibrated plastic periodontal probe. Re-entry surgery was performed to remeasure the augmented site and to remove Ti-mesh at 6th month. Independent paired t-tests for the inter-group comparison and student-paired t-tests for the intra-group comparison were performed. The differences were considered to be significant at p ≤ 0.05. Results: Mean defect fill with respect to height and width was 3.50 ± 0.54 mm (87%) and 2.33 ± 0.51 mm (82%) for collagen membrane and 3.83 ± 0.75 mm (92%) and 2.50 ± 0.54 mm (88%) for Ti-mesh group respectively. Conclusions: Within the limitation of the study, it was concluded that mean defect height and width after 6 months were statistically significant within the group without significant difference between them, although defect resolution was better in Ti-mesh.

Keywords: collagen membrane, dehiscence, dental implant, horizontal bone, augmentation, ti-mesh

Procedia PDF Downloads 111
4617 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite

Authors: Rong Li, Brian D. Wirth, Bing Liu

Abstract:

Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.

Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution

Procedia PDF Downloads 155
4616 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 11
4615 Evaluation of Three Potato Cultivars for Processing (Crisp French Fries)

Authors: Hatim Bastawi

Abstract:

Three varieties of potatoes, namely Agria, Alpha and Diamant were evaluated for their suitability for industrial production of French fries. The evaluation was under taken after testing quality parameters of specific gravity, dry matter, peeling ratio, and defect after frying and panel test. The variety Agria ranked the best followed by Alpha with regard to the parameters tested. On the other hand, Diamant showed significantly higher defect percentage than the other cultivars. Also, it was significantly judged of low acceptance by panelists.

Keywords: cultivars, crisps, French fries

Procedia PDF Downloads 261
4614 Reducing Defects through Organizational Learning within a Housing Association Environment

Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton

Abstract:

Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.

Keywords: defects, new homes, housing association, organizational learning

Procedia PDF Downloads 316
4613 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 294
4612 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 318
4611 Two Cases of VACTERL Association in Pregnancy with Lymphocyte Therapy

Authors: Seyed Mazyar Mortazavi, Masod Memari, Hasan Ali Ahmadi, Zhaleh Abed

Abstract:

Introduction: VACTERL association is a rare disorder with various congenital malformations. The aetiology remains unknown. Combination of at least three congenital anomalies of the following criteria is required for diagnosis: vertebral defects, anal atresia, cardiac anomalies, tracheo-esophageal fistula, renal anomalies, and limb defects. Case presentation: The first case was 1-day old male neonate with multiple congenital anomalies was bore from 28 years old mother. The mother had history of pregnancy with lymphocyte therapy. His anomalies included: defects in thoracic and lumbar vertebral, anal atresia, bilateral hydronephrosis, atrial septal defect, and lower limb abnormality. Other anomalies were cryptorchidism and nasal canal narrowing. The second case was born with 32 weeks gestational age from mother with history of pregnancy with lymphocyte therapy. He had thoracic vertebral defect, cardiac anomalies and renal defect. Conclusion: diagnosis based on clinical finding is VACTERL association. Early diagnosis is very important to investigation and treatment of other coexistence anomalies. VACTERL association in mothers with history of pregnancy with lymphocyte therapy has suggested possibly of relationship between VACTERL association and this method of pregnancy.

Keywords: anal atresia, tracheo-esophageal fistula, atrial septal defect, lymphocyte therapy

Procedia PDF Downloads 455
4610 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 151
4609 Outcome of Comparison between Partial Thickness Skin Graft Harvesting from Scalp and Lower Limb for Scalp Defect: A Clinical Trial Study

Authors: Mahdi Eskandarlou, Mehrdad Taghipour

Abstract:

Background: Partial-thickness skin graft is the cornerstone for scalp defect repair. Routine donor sites include abdomen, thighs, and buttocks. Given the potential side effects following harvesting from these sites and the potential advantages of harvesting from scalp (broad surface, rapid healing, and better cosmetics results), this study is trying to compare the outcomes of graft harvesting from scalp and lower limb. Methods: This clinical trial is conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to plastic surgery clinic at Besat Hospital during the time period between 2018 and 2019. Sampling was done by simple randomization using random digit table. Data gathering was performed using a designated checklist. The donor site in case group and control group was scalp and lower limb, respectively. The resultant data were analyzed using chi-squared and t-test and SPPS version 21 (SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp). Results: Of the total 40 patients participating in this study, 28 patients (70%) were male, and 12 (30%) were female with and mean age of 63.62 ± 09.73 years. Hypertension and diabetes mellitus were the most common comorbidities among patients with basal cell carcinoma (BCC) and trauma being the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The most common anatomic location of defect for case and control groups was temporal and parietal, respectively. Most of the defects were deep to galea zone. The mean diameter of defect was 24.28 ± 45.37 mm for all of the patients. The difference between diameter of defect in both groups was statistically meaningful, while no such difference between graft diameter was seen. The graft 'Take' was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale, and the satisfaction was higher in them per Likert scale. Conclusion: Scalp can safely be used as donor site for skin graft to be used for scalp defects, which is associated with better results and lower complication rates compared to other donor sites.

Keywords: donor site, leg, partial-thickness graft, scalp

Procedia PDF Downloads 150
4608 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 366
4607 The Analysis of Defects Prediction in Injection Molding

Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian

Abstract:

This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.

Keywords: injection molding, plastic defects, short shot, Taguchi method

Procedia PDF Downloads 218
4606 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 16
4605 Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case

Authors: Sarakorn Sukaviriya

Abstract:

This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack.

Keywords: steam-pipe leakage, steam leakage, weld crack analysis, weld defect

Procedia PDF Downloads 133