Search results for: robotic systems
9564 Non Immersive Virtual Laboratory Applied to Robotics Arms
Authors: Luis F. Recalde, Daniela A. Bastidas, Dayana E. Gallegos, Patricia N. Constante, Victor H. Andaluz
Abstract:
This article presents a non-immersive virtual lab-oratory to emulate the behavior of the Mitsubishi Melfa RV 2SDB robotic arm, allowing students and users to acquire skills and experience related to real robots, augmenting the access and learning of robotics in Universidad de las Fuerzas Armadas (ESPE). It was developed using the mathematical model of the robotic arm, thus defining the parameters for virtual recreation. The environment, interaction, and behavior of the robotic arm were developed in a graphic engine (Unity3D) to emulate learning tasks such as in a robotics laboratory. In the virtual system, four inputs were developed for the movement of the robot arm; further, to program the robot, a user interface was created where the user selects the trajectory such as point to point, line, arc, or circle. Finally, the hypothesis of the industrial robotic learning process is validated through the level of knowledge acquired after using the system.Keywords: virtual learning, robot arm, non-immersive reality, mathematical model
Procedia PDF Downloads 1019563 Robotic Assisted vs Traditional Laparoscopic Partial Nephrectomy Peri-Operative Outcomes: A Comparative Single Surgeon Study
Authors: Gerard Bray, Derek Mao, Arya Bahadori, Sachinka Ranasinghe
Abstract:
The EAU currently recommends partial nephrectomy as the preferred management for localised cT1 renal tumours, irrespective of surgical approach. With the advent of robotic assisted partial nephrectomy, there is growing evidence that warm ischaemia time may be reduced compared to the traditional laparoscopic approach. There is still no clear differences between the two approaches with regards to other peri-operative and oncological outcomes. Current limitations in the field denote the lack of single surgeon series to compare the two approaches as other studies often include multiple operators of different experience levels. To the best of our knowledge, this study is the first single surgeon series comparing peri-operative outcomes of robotic assisted and laparoscopic PN. The current study aims to reduce intra-operator bias while maintaining an adequate sample size to assess the differences in outcomes between the two approaches. We retrospectively compared patient demographics, peri-operative outcomes, and renal function derangements of all partial nephrectomies undertaken by a single surgeon with experience in both laparoscopic and robotic surgery. Warm ischaemia time, length of stay, and acute renal function deterioration were all significantly reduced with robotic partial nephrectomy, compared to laparoscopic nephrectomy. This study highlights the benefits of robotic partial nephrectomy. Further prospective studies with larger sample sizes would be valuable additions to the current literature.Keywords: partial nephrectomy, robotic assisted partial nephrectomy, warm ischaemia time, peri-operative outcomes
Procedia PDF Downloads 1419562 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision
Authors: Alaa El-Din Rezk
Abstract:
In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.Keywords: autonomous robotic, Hough transform, image processing, machine vision
Procedia PDF Downloads 3169561 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu
Abstract:
The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository
Procedia PDF Downloads 2929560 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints
Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao
Abstract:
This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb
Procedia PDF Downloads 2229559 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis
Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang
Abstract:
Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries
Procedia PDF Downloads 1469558 Robotic Logging Technology: The Future of Oil Well Logging
Authors: Nitin Lahkar, Rishiraj Goswami
Abstract:
“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).Keywords: robotic logging technology, innovation, geology, geophysics
Procedia PDF Downloads 3119557 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 689556 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections
Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang
Abstract:
Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure
Procedia PDF Downloads 5039555 Haptic Robotic Glove for Tele-Exploration of Explosive Devices
Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes
Abstract:
ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation
Procedia PDF Downloads 1789554 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 979553 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator
Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski
Abstract:
Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.Keywords: human robot interaction, drones, gestures, robotics
Procedia PDF Downloads 1619552 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator
Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters
Abstract:
Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation
Procedia PDF Downloads 1279551 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation
Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad
Abstract:
For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control
Procedia PDF Downloads 4809550 The Applications of Wire Print in Composite Material Research and Fabrication Process
Authors: Hsu Yi-Chia, Hoy June-Hao
Abstract:
FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing
Procedia PDF Downloads 1329549 Modeling and Control of an Acrobot Using MATLAB and Simulink
Authors: Dong Sang Yoo
Abstract:
The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system
Procedia PDF Downloads 8009548 Endometriosis, Bladder Endometriosis (BE), Urinary Tract Endometriosis (UTE), Robotic-Assisted Surgery
Authors: Farida Eid, Hala Nasseif, Hana Mokhtar, Labib Riachi, Mudhar Hasan
Abstract:
Bladder Endometriosis is a rare form of endometriosis and is defined as the presence of endometriotic tissue in the detrusor muscle of the bladder, either in full or partial thickness. Women typically present with dysuria, urinary frequency, hematuria, and recurrent urinary tract infections. Bladder endometriosis is typically found at the bladder base and bladder dome. Transvaginal ultrasound is considered first-line imaging, and the condition is typically managed with laparoscopic partial cystectomy. A 33-year-old nulliparous woman presented with chronic pelvic pain, severe dysmenorrhea, and metrorrhagia. The patient was previously diagnosed with bladder endometriomas two years ago with multiple recurrences. MRI revealed urinary bladder endometriosis measuring 3 x 2 x 1.5 cm. Accordingly, the patient underwent a cystoscopy-guided robotic-assisted excision of the endometriotic implant in the bladder with cystotomy and repair of the bladder mucosa. The operation was tolerated well, and the postoperative period was uneventful. Bladder Endometriosis (BE) typically presents with urinary symptoms and can be mistaken for a bladder tumor upon further imaging. The case was successfully managed with cystoscopy-guided, robotic-assisted excision and fulguration of the endometriotic implant in the bladder.Keywords: endometriosis, bladder endometriosis (BE), urinary tract endometriosis (UTE), robotic-assisted surgery
Procedia PDF Downloads 319547 Semi-Autonomous Surgical Robot for Pedicle Screw Insertion on ex vivo Bovine Bone: Improved Workflow and Real-Time Process Monitoring
Authors: Robnier Reyes, Andrew J. P. Marques, Joel Ramjist, Chris R. Pasarikovski, Victor X. D. Yang
Abstract:
Over the past three decades, surgical robotic systems have demonstrated their ability to improve surgical outcomes. The LBR Med is a collaborative robotic arm that is meant to work with a surgeon to streamline surgical workflow. It has 7 degrees of freedom and thus can be easily oriented. Position and torque sensors at each joint allow it to maintain a position accuracy of 150 µm with real-time force and torque feedback, making it ideal for complex surgical procedures. Spinal fusion procedures involve the placement of as many as 20 pedicle screws, requiring a great deal of accuracy due to proximity to the spinal canal and surrounding vessels. Any deviation from intended path can lead to major surgical complications. Assistive surgical robotic systems are meant to serve as collaborative devices easing the workload of the surgeon, thereby improving pedicle screw placement by mitigating fatigue related inaccuracies. Moreover, robotic spinal systems have shown marked improvements over conventional freehanded techniques in both screw placement accuracy and fusion quality and have greatly reduced the need for screw revision, intraoperatively and post-operatively. However, current assistive spinal fusion robots, such as the ROSA Spine, are limited in functionality to positioning surgical instruments. While they offer a small degree of improvement in pedicle screw placement accuracy, they do not alleviate surgeon fatigue, nor do they provide real-time force and torque feedback during screw insertion. We propose a semi-autonomous surgical robot workflow for spinal fusion where the surgeon guides the robot to its initial position and orientation, and the robot drives the pedicle screw accurately into the vertebra. Here, we demonstrate feasibility by inserting pedicle screws into ex-vivo bovine rib bone. The robot monitors position, force and torque with respect to predefined values selected by the surgeon to ensure the highest possible spinal fusion quality. The workflow alleviates the strain on the surgeon by having the robot perform the screw placement while the ability to monitor the process in real-time keeps the surgeon in the system loop. The approach we have taken in terms of level autonomy for the robot reflects its ability to safely collaborate with the surgeon in the operating room without external navigation systems.Keywords: ex vivo bovine bone, pedicle screw, surgical robot, surgical workflow
Procedia PDF Downloads 1709546 Low-Cost Robotic-Assisted Laparoscope
Authors: Ege Can Onal, Enver Ersen, Meltem Elitas
Abstract:
Laparoscopy is a surgical operation, well known as keyhole surgery. The operation is performed through small holes, hence, scars of a patient become much smaller, patients can recover in a short time and the hospital stay becomes shorter in comparison to an open surgery. Several tools are used at laparoscopic operations; among them, the laparoscope has a crucial role. It provides the vision during the operation, which will be the main focus in here. Since the operation area is very small, motion of the surgical tools might be limited in laparoscopic operations compared to traditional surgeries. To overcome this limitation, most of the laparoscopic tools have become more precise, dexterous, multi-functional or automated. Here, we present a robotic-assisted laparoscope that is controlled with pedals directly by a surgeon. Thus, the movement of the laparoscope might be controlled better, so there will not be a need to calibrate the camera during the operation. The need for an assistant that controls the movement of the laparoscope will be eliminated. The duration of the laparoscopic operation might be shorter since the surgeon will directly operate the camera.Keywords: laparoscope, laparoscopy, low-cost, minimally invasive surgery, robotic-assisted surgery
Procedia PDF Downloads 3429545 Electromyography Controlled Robotic Toys for Autistic Children
Authors: Uvais Qidwai, Mohamed Shakir
Abstract:
This paper presents an initial study related to the use of robotic toys as teaching and therapeutic aid tools for teachers and care-givers as well as parents of children with various levels of autism spectrum disorder (ASD). Some of the most common features related to the behavior of a child with ASD are his/her social isolation, living in their own world, not being physically active, and not willing to learn new things. While the teachers, parents, and all other related care-givers do their best to improve the condition of these kids, it is usually quite an uphill task. However, one remarkable observation that has been reported by several teachers dealing with ASD children is the fact that the same children do get attracted to toys with lights and sounds. Hence, this project targets the development/modifications of such existing toys into appropriate behavior training tools which the care-givers can use as they would desire. Initially, the remote control is in hand of the trainer, but after some time, the child is entrusted with the control of the robotic toy to test for the level of interest. It has been found during the course of this study that children with quite low learning activity got extremely interested in the robot and even advanced to controlling the robot with the Electromyography (EMG). It has been observed that the children did show some hesitation in the beginning 5 minutes of the very first sessions of such interaction but were very comfortable afterwards which has been considered as a very strong indicator of the potential of this technique in teaching and rehabilitation of children with ASD or similar brain disorders.Keywords: Autism Spectrum Disorder (ASD), robotic toys, IR control, electromyography, LabVIEW based remote control
Procedia PDF Downloads 4449544 Assessing Mobile Robotic Telepresence Based On Measures of Social Telepresence
Authors: A. Bagherzadhalimi, E. Di Maria
Abstract:
The feedbacks obtained regarding the sense of presence from pilot users operating a Mobile Robotic presence (MRP) system to visit a simulated museum are reported in this paper. The aim is to investigate how much the perception of system’s usefulness and ease of use is affected by operators’ sense of social telepresence (presence) in the remote location. Therefore, scenarios of visiting a museum are simulated and the user operators are supposed to perform some regular tasks inside the remote environment including interaction with local users, navigation and visiting the artworks. Participants were divided into two groups, those who had previous experience of operation and interaction with a MRP system and those who never had experience. Based on the results, both groups provided different feedbacks. Moreover, there was a significant association between user’s sense of presence and their perception of system usefulness and ease of use.Keywords: mobile robotic telepresence, museum, social telepresence, usability test
Procedia PDF Downloads 4049543 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students
Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee
Abstract:
Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.Keywords: hands-on activity, STEM education, computer programming, metal work
Procedia PDF Downloads 4659542 Advanced Techniques in Robotic Mitral Valve Repair
Authors: Abraham J. Rizkalla, Tristan D. Yan
Abstract:
Purpose: Durable mitral valve repair is preferred to a replacement, avoiding the need for anticoagulation or re-intervention, with a reduced risk of endocarditis. Robotic mitral repair has been gaining favour globally as a safe, effective, and reproducible method of minimally invasive valve repair. In this work, we showcase the use of the Davinci© Xi robotic platform to perform several advanced techniques, working synergistically to achieve successful mitral repair in advanced mitral disease. Techniques: We present the case of a Barlow type mitral valve disease with a tall and redundant posterior leaflet resulting in severe mitral regurgitation and systolic anterior motion. Firstly, quadrangular resection of P2 is performed to remove the excess and redundant leaflet. Secondly, a sliding leaflet plasty of P1 and P3 is used to reconstruct the posterior leaflet. To anchor the newly formed posterior leaflet to the papillary muscle, CV-4 Goretex neochordae are fashioned using the innovative string, ruler, and bulldog technique. Finally, mitral valve annuloplasty and closure of a patent foramen ovale complete the repair. Results: There was no significant residual mitral regurgitation and complete resolution of the systolic anterior motion of the mitral valve on post operative transoesophageal echocardiography. Conclusion: This work highlights the robotic approach to complex repair techniques for advanced mitral valve disease. Familiarity with resection and sliding plasty, neochord implantation, and annuloplasty allows the modern cardiac surgeon to achieve a minimally-invasive and durable mitral valve repair when faced with complex mitral valve pathology.Keywords: robotic mitral valve repair, Barlow's valve, sliding plasty, neochord, annuloplasty, quadrangular resection
Procedia PDF Downloads 879541 Robotic Arm Allowing a Diabetic Quadriplegic Patient to Self-Administer Insulin
Authors: L. Parisi
Abstract:
A method which allows a diabetic quadriplegic patient that has had four limb amputations (above the knee and elbow) to self-administer injections of insulin has been designed. The aim of this research project is to improve a quadriplegic patient’s self-management, affected by diabetes, by designing a suitable device for self-administering insulin.The quadriplegic patient affected by diabetes has to be able to self-administer insulin safely and independently to guarantee stable healthy conditions. The device also should be designed to adapt to a number of different varying personal characteristics such as height and body weight.Keywords: robotic arm, self-administration, insulin, diabetes, quadriplegia
Procedia PDF Downloads 3729540 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning
Authors: Yangzhi Li
Abstract:
Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.Keywords: robotic construction, robotic assembly, visual guidance, machine learning
Procedia PDF Downloads 879539 Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems
Authors: Samuel Knox, Verdon Crann, Peyman Amiri, William Crowther
Abstract:
There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup.Keywords: aerial robotics, distributed framework, experimental, planning and control
Procedia PDF Downloads 1139538 Multi-objective Rationality Optimisation for Robotic-fabrication-oriented Free-form Timber Structure Morphology Design
Authors: Yiping Meng, Yiming Sun
Abstract:
The traditional construction industry is unable to meet the requirements for novel fabrication and construction. Automated construction and digital design have emerged as industry development trends that compensate for this shortcoming under the backdrop of Industrial Revolution 4.0. Benefitting from more flexible working space and more various end-effector tools compared to CNC methods, robot fabrication and construction techniques have been used in irregular architectural design. However, there is a lack of a systematic and comprehensive design and optimisation workflow considering geometric form, material, and fabrication methods. This paper aims to propose a design optimisation workflow for improving the rationality of a free-form timber structure fabricated by the robotic arm. Firstly, the free-form surface is described by NURBS, while its structure is calculated using the finite element analysis method. Then, by considering the characteristics and limiting factors of robotic timber fabrication, strain energy and robustness are set as optimisation objectives to optimise structural morphology by gradient descent method. As a result, an optimised structure with axial force as the main force and uniform stress distribution is generated after the structure morphology optimisation process. With the decreased strain energy and the improved robustness, the generated structure's bearing capacity and mechanical properties have been enhanced. The results prove the feasibility and effectiveness of the proposed optimisation workflow for free-form timber structure morphology design.Keywords: robotic fabrication, free-form timber structure, Multi-objective optimisation, Structural morphology, rational design
Procedia PDF Downloads 1969537 Adaptive Control Approach for an Unmanned Aerial Manipulator
Authors: Samah Riache, Madjid Kidouche
Abstract:
In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control
Procedia PDF Downloads 1869536 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control
Procedia PDF Downloads 5219535 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation
Procedia PDF Downloads 162