Search results for: pulse code detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5091

Search results for: pulse code detection

5061 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis

Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti

Abstract:

Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.

Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis

Procedia PDF Downloads 124
5060 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device

Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng

Abstract:

The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.

Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect

Procedia PDF Downloads 387
5059 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 179
5058 Characterization of Onboard Reliable Error Correction Code FORSDRAM Controller

Authors: N. Pitcheswara Rao

Abstract:

In the process of conveying the information there may be a chance of signal being corrupted which leads to the erroneous bits in the message. The message may consist of single, double and multiple bit errors. In high-reliability applications, memory can sustain multiple soft errors due to single or multiple event upsets caused by environmental factors. The traditional hamming code with SEC-DED capability cannot be address these types of errors. It is possible to use powerful non-binary BCH code such as Reed-Solomon code to address multiple errors. However, it could take at least a couple dozen cycles of latency to complete first correction and run at a relatively slow speed. In order to overcome this drawback i.e., to increase speed and latency we are using reed-Muller code.

Keywords: SEC-DED, BCH code, Reed-Solomon code, Reed-Muller code

Procedia PDF Downloads 400
5057 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 313
5056 Characterization of Onboard Reliable Error Correction Code for SDRAM Controller

Authors: Pitcheswara Rao Nelapati

Abstract:

In the process of conveying the information there may be a chance of signal being corrupted which leads to the erroneous bits in the message. The message may consist of single, double and multiple bit errors. In high-reliability applications, memory can sustain multiple soft errors due to single or multiple event upsets caused by environmental factors. The traditional hamming code with SEC-DED capability cannot be address these types of errors. It is possible to use powerful non-binary BCH code such as Reed-Solomon code to address multiple errors. However, it could take at least a couple dozen cycles of latency to complete first correction and run at a relatively slow speed. In order to overcome this drawback i.e., to increase speed and latency we are using reed-Muller code.

Keywords: SEC-DED, BCH code, Reed-Solomon code, Reed-Muller code

Procedia PDF Downloads 388
5055 Mathematical Simulation of Performance Parameters of Pulse Detonation Engine

Authors: Subhash Chander, Tejinder Kumar Jindal

Abstract:

Due to its simplicity, Pulse detonation engine technology has recently emerged as a future aerospace propulsion technology. In this paper, we studied various parameters affecting the performance of Pulse detonation engine (PDE) like tube length for proper deflagration to detonation transition (DDT), tube diameter (combustion tube), tube length, Shelkin spiral, Cell size, Equivalence ratio of fuel used etc. We have discussed various techniques for reducing the length of pulse tube by using various DDT enhancing devices. The effect of length of the tube from 40 mm to 3000 mm and diameter from 10 mm to 100 mm has been analyzed. The fuel used is C2H2 and oxidizer is O2. The results are processed in MATLAB for drawing valid conclusions.

Keywords: pulse detonation engine (PDE), deflagration to detonation (DDT), Schelkin spiral, cell size (λ)

Procedia PDF Downloads 545
5054 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel

Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan

Abstract:

An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.

Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration

Procedia PDF Downloads 358
5053 Zero Cross-Correlation Codes Based on Balanced Incomplete Block Design: Performance Analysis and Applications

Authors: Garadi Ahmed, Boubakar S. Bouazza

Abstract:

The Zero Cross-Correlation (C, w) code is a family of binary sequences of length C and constant Hamming-weight, the cross correlation between any two sequences equal zero. In this paper, we evaluate the performance of ZCC code based on Balanced Incomplete Block Design (BIBD) for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) system using direct detection. The BER obtained is better than 10-9 for five simultaneous users.

Keywords: spectral amplitude coding-optical code-division-multiple-access (SAC-OCDMA), phase induced intensity noise (PIIN), balanced incomplete block design (BIBD), zero cross-correlation (ZCC)

Procedia PDF Downloads 341
5052 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.

Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection

Procedia PDF Downloads 372
5051 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets

Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett

Abstract:

A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.

Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor

Procedia PDF Downloads 372
5050 Embedded Electrochemistry with Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents

Authors: Amer Dawoud, Jesy Motchaalangaram, Arati Biswakarma, Wujan Mio, Karl Wallace

Abstract:

The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWA) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.

Keywords: drone-based, remote detection chemical warfare agents, miniaturized, potentiostat

Procedia PDF Downloads 107
5049 A Resistant-Based Comparative Study between Iranian Concrete Design Code and Some Worldwide Ones

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

The design in most counties should be inevitably carried out by their native code such as Iran. Since the Iranian concrete code does not exist in structural design software, most engineers in this country analyze the structures using commercial software but design the structural members manually. This point motivated us to make a communication between Iranian code and some other well-known ones to create facility for the engineers. Finally, this paper proposes the so-called interpretation charts which help specify the position of Iranian code in comparison of some worldwide ones.

Keywords: beam, concrete code, strength, interpretation charts

Procedia PDF Downloads 498
5048 Implementation of Multi-Carrier Pulse Width Modulation Techniques in Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the Multi-Carrier Pulse Width Modulation for the minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. Multicarrier Pulse Width Modulation method uses Alternate Position of Disposition scheme to determine the appropriate switching angle to Multi-Level Inverter. In this paper simulation results shows that the validation of Multi-Carrier Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform.

Keywords: alternate position, fast fourier analysis, multi-carrier pulse width modulation, multi-level inverter, total harmonic distortion

Procedia PDF Downloads 620
5047 Spread Spectrum with Notch Frequency Using Pulse Coding Method for Switching Converter of Communication Equipment

Authors: Yasunori Kobori, Futoshi Fukaya, Takuya Arafune, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an EMI spread spectrum technique to enable to set notch frequencies using pulse coding method for DC-DC switching converters of communication equipment. The notches in the spectrum of the switching pulses appear at the frequencies obtained from empirically derived equations with the proposed spread spectrum technique using the pulse coding methods, the PWM (Pulse Width Modulation) coding or the PCM (Pulse Cycle Modulation) coding. This technique would be useful for the switching converters in the communication equipment which receives standard radio waves, without being affected by noise from the switching converters. In our proposed technique, the notch frequencies in the spectrum depend on the pulse coding method. We have investigated this technique to apply to the switching converters and found that there is good relationship agreement between the notch frequencies and the empirical equations. The notch frequencies with the PWM coding is equal to the equation F=k/(WL-WS). With the PCM coding, that is equal to the equation F=k/(TL-TS).

Keywords: notch frequency, pulse coding, spread spectrum, switching converter

Procedia PDF Downloads 347
5046 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter

Authors: Shunsuke Fujiwara, Takashi Kaburagi, Kazuyuki Kobayashi, Kajiro Watanabe, Yosuke Kurihara

Abstract:

This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions.

Keywords: bidirectional microphone, pressure pulse wave meter, health condition, novel sensor device

Procedia PDF Downloads 523
5045 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 54
5044 Experimenting with Error Performance of Systems Employing Pulse Shaping Filters on a Software-Defined-Radio Platform

Authors: Chia-Yu Yao

Abstract:

This paper presents experimental results on testing the symbol-error-rate (SER) performance of quadrature amplitude modulation (QAM) systems employing symmetric pulse-shaping square-root (SR) filters designed by minimizing the roughness function and by minimizing the peak-to-average power ratio (PAR). The device used in the experiments is the 'bladeRF' software-defined-radio platform. PAR is a well-known measurement, whereas the roughness function is a concept for measuring the jitter-induced interference. The experimental results show that the system employing minimum-roughness pulse-shaping SR filters outperforms the system employing minimum-PAR pulse-shaping SR filters in the sense of SER performance.

Keywords: pulse-shaping filters, FIR filters, jittering, QAM

Procedia PDF Downloads 322
5043 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)

Procedia PDF Downloads 495
5042 Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse

Authors: Ping Li, Bing Feng, Junpu Zhao, Xudong Xie, Dangpeng Xu, Kuixing Zheng, Qihua Zhu, Xiaofeng Wei

Abstract:

In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility.

Keywords: inertial confinement fusion, laser pulse control, beam spatio-temporal multiplexing, power balance

Procedia PDF Downloads 131
5041 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer

Authors: Klas Elmquist, Anders Larsson

Abstract:

Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.

Keywords: modulator, solid-state, PFN-system, thyratron

Procedia PDF Downloads 106
5040 Code-Switching in Facebook Chatting Among Maldivian Teenagers

Authors: Aaidha Hammad

Abstract:

This study examines the phenomenon of code switching among teenagers in the Maldives while they carry out conversations through Facebook in the form of “Facebook Chatting”. The current study aims at evaluating the frequency of code-switching and it investigates between what languages code-switching occurs. Besides the study identifies the types of words that are often codeswitched and the triggers for code switching. The methodology used in this study is mixed method of qualitative and quantitative approach. In this regard, the chat log of a group conversation between 10 teenagers was collected and analyzed. A questionnaire was also administered through online to 24 different teenagers from different corners of the Maldives. The age of teenagers ranged between 16 and 19 years. The findings of the current study revealed that while Maldivian teenagers chat in Facebook they very often code switch and these switches are most commonly between Dhivehi and English, but some other languages are also used to some extent. It also identified the different types of words that are being often code switched among the teenagers. Most importantly it explored different reasons behind code switching among the Maldivian teenagers in Facebook chatting.

Keywords: code-switching, Facebook, Facebook chatting Maldivian teenagers

Procedia PDF Downloads 219
5039 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 467
5038 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 286
5037 Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively

Authors: Ashiq Rahman, Sunil Thapa, Shunyao Fan, Niloy K. Dutta

Abstract:

A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates Rational Harmonic Mode Locking. Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from rational harmonic mode-locking (RHML). Autocorrelator trace shows that the pulse width is reduced from 5.6-ps to 3.2-ps using charcoal at 20-GHz, and to 2.7-ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations.

Keywords: fiber optics, fiber lasers, mode locking, saturable absorbers

Procedia PDF Downloads 66
5036 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode

Authors: Rovina Kobun, Shafiquzzaman Siddiquee

Abstract:

A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.

Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries

Procedia PDF Downloads 396
5035 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications

Authors: T. Gangadhararao, K. Krishna Kishore

Abstract:

Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.

Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code

Procedia PDF Downloads 404
5034 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori

Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh

Abstract:

An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.

Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)

Procedia PDF Downloads 235
5033 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes

Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov

Abstract:

Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.

Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes

Procedia PDF Downloads 203
5032 A Framework for Blockchain Vulnerability Detection and Cybersecurity Education

Authors: Hongmei Chi

Abstract:

The Blockchain has become a necessity for many different societal industries and ordinary lives including cryptocurrency technology, supply chain, health care, public safety, education, etc. Therefore, training our future blockchain developers to know blockchain programming vulnerability and I.T. students' cyber security is in high demand. In this work, we propose a framework including learning modules and hands-on labs to guide future I.T. professionals towards developing secure blockchain programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle following the concept of Secure Software Development Life Cycle (SSDLC). In this research, our goal is to make blockchain programmers and I.T. students aware of the vulnerabilities of blockchains. In summary, we develop a framework that will (1) improve students' skills and awareness of blockchain source code vulnerabilities, detection tools, and mitigation techniques (2) integrate concepts of blockchain vulnerabilities for IT students, (3) improve future IT workers’ ability to master the concepts of blockchain attacks.

Keywords: software vulnerability detection, hands-on lab, static analysis tools, vulnerabilities, blockchain, active learning

Procedia PDF Downloads 59