Search results for: pattern classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4597

Search results for: pattern classification

4567 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 167
4566 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
4565 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 145
4564 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 545
4563 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
4562 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method

Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt

Abstract:

Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.

Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS

Procedia PDF Downloads 151
4561 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 177
4560 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 352
4559 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 434
4558 Investigating the Morphological Patterns of Lip Prints and Their Effectiveness in Individualization and Gender Determination in Pakistani Population

Authors: Makhdoom Saad Wasim Ghouri, Muneeba Butt, Mohammad Ashraf Tahir, Rashid Bhatti, Akbar Ali, Abdul Rehman, Abdul Basit, Muzzamel Rehman, Shahbaz Aslam, Farakh Mansoor, Ahmad Fayyaz, Hadia Siddiqui

Abstract:

Lip print analysis (Cheiloscopy) is the new emerging technique that might be the guardian angel in establishing the personal identity. Cheiloscopy is basically the study of elevations and depressions present on the external surface of the lips. In our study, 600 lip prints samples were taken (300 males and 300 females). Lip prints of each individual were divided into four quadrants and the upper middle portion. For general classification, middle part of the lower lip almost 10 mm wide would be taken into consideration. After analysis of lip-prints, our results show that lip prints are the unique and permanent character of every individual. No two lip print was matched with each other even of the identical twins. Our study reveals that there is equal distribution of lip print patterns among all the four quadrants of lips and the upper middle portion; these distributions were statistically analyzed by applying chi-square test which shows the significant results. In general classification, 5 lip print types/patterns were studied, Type 1 (Vertical lines), Type 2 (Branched pattern), Type 3 (Intersected pattern), Type 4 (Reticular pattern) and Type 5 (Undetermined). Type 1 and Type 2 were found to be the most frequent patterns in female population, while Type 3 and Type 4 most commonly found in male population. These results were also analyzed by applying Chi-square test, and the results show significance statistically. Thus, establishing sex determination on the basis of lip print types among the gender. Type 5 was the least common pattern among genders.

Keywords: cheiloscopy, distribution, quadrants, sex determination

Procedia PDF Downloads 297
4557 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 70
4556 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling

Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed

Abstract:

Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.

Keywords: machine learning, pattern recognition, facial pose classification, time series

Procedia PDF Downloads 350
4555 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 100
4554 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 147
4553 Arabic Text Classification: Review Study

Authors: M. Hijazi, A. Zeki, A. Ismail

Abstract:

An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.

Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations

Procedia PDF Downloads 426
4552 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305
4551 Mapping of Arenga Pinnata Tree Using Remote Sensing

Authors: Zulkiflee Abd Latif, Sitinor Atikah Nordin, Alawi Sulaiman

Abstract:

Different tree species possess different and various benefits. Arenga Pinnata tree species own several potential uses that is valuable for the economy and the country. Mapping vegetation using remote sensing technique involves various process, techniques and consideration. Using satellite imagery, this method enables the access of inaccessible area and with the availability of near infra-red band; it is useful in vegetation analysis, especially in identifying tree species. Pixel-based and object-based classification technique is used as a method in this study. Pixel-based classification technique used in this study divided into unsupervised and supervised classification. Object based classification technique becomes more popular another alternative method in classification process. Using spectral, texture, color and other information, to classify the target make object-based classification is a promising technique for classification. Classification of Arenga Pinnata trees is overlaid with elevation, slope and aspect, soil and river data and several other data to give information regarding the tree character and living environment. This paper will present the utilization of remote sensing technique in order to map Arenga Pinnata tree species

Keywords: Arenga Pinnata, pixel-based classification, object-based classification, remote sensing

Procedia PDF Downloads 380
4550 A Novel Search Pattern for Motion Estimation in High Efficiency Video Coding

Authors: Phong Nguyen, Phap Nguyen, Thang Nguyen

Abstract:

High Efficiency Video Coding (HEVC) or H.265 Standard fulfills the demand of high resolution video storage and transmission since it achieves high compression ratio. However, it requires a huge amount of calculation. Since Motion Estimation (ME) block composes about 80 % of calculation load of HEVC, there are a lot of researches to reduce the computation cost. In this paper, we propose a new algorithm to lower the number of Motion Estimation’s searching points. The number of computing points in search pattern is down from 77 for Diamond Pattern and 81 for Square Pattern to only 31. Meanwhile, the Peak Signal to Noise Ratio (PSNR) and bit rate are almost equal to those of conventional patterns. The motion estimation time of new algorithm reduces by at 68.23%, 65.83%compared to the recommended search pattern of diamond pattern, square pattern, respectively.

Keywords: motion estimation, wide diamond, search pattern, H.265, test zone search, HM software

Procedia PDF Downloads 611
4549 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification

Procedia PDF Downloads 338
4548 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
4547 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
4546 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 95
4545 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
4544 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
4543 Classification of High Order Thinking Skills (HOTS)

Authors: Mohammed Alkiyumi

Abstract:

Educational systems are currently paying special attention to developing learners' higher thinking skills to develop the capabilities of human resources to deal with contemporary challenges. Although psychologists disagree about the concept of higher-order thinking skills and the skills they include, there is unlimited effort in designing them and building strategies for their implementation. The most important factor helping to develop these skills is their classification according to specific criteria, and the most important of these classifications is Bloom's classification, which is dominant in most educational systems at all levels. Previous classifications have many limitations, including the comprehensiveness of the skills they contain, the logical structure of their hierarchy, and classification criteria. Therefore, this article puts another step in this area by providing a new classification of higher-order thinking skills that includes five categories: the first response stage, transformative stage, application, reasoning stage, and the production stage with a logical justification for this classification, with some techniques to developing it among learners.

Keywords: high-order thinking skills, classification, teaching, education

Procedia PDF Downloads 42
4542 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 435
4541 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
4540 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population

Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya

Abstract:

Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.

Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population

Procedia PDF Downloads 298
4539 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 546
4538 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 457