Search results for: internal generative mechanism
5584 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 1445583 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 1935582 Internal Audit and the Effectiveness and Efficiency of Operations in Hospitals
Authors: Naziru Suleiman
Abstract:
The ever increasing cases of financial frauds and corporate accounting scandals in recent years have raised more concern on the operation of internal control mechanisms and performance of the internal audit departments in organizations. In most cases the seeming presence of both the internal control system and internal audit in organizations do not prove useful as frauds errors and irregularities are being perpetuated. The aim of this study, therefore, is to assess the role of internal audit in achieving the objectives of internal control system of federal hospitals in Kano State from the perception of the respondents. The study used survey research design and generated data from primary source by means of questionnaire. A total number of 100 copies of questionnaire were administered out of which 68 were duly completed and returned. Cronbach’s alpha was used to test the internal validity of the various items in the constructs. Descriptive statistics, chi-square test, Mann Whitney U test and Kruskal Wallis ANOVA were employed for the analysis of data. The study finds that from the perception of the respondents, internal audit departments in Federal Hospitals in Kano State are effective and that they contribute positively to the overall attainment of the objectives of internal control system of these hospitals. There is no significant difference found on the views of the respondents from the three hospitals. Hence, the study concludes that strong and functional internal audit department is a basic requirement for effectiveness of operations of the internal control system. In the light of the findings, it is recommended that internal audit should continue to ensure that the objectives of internal control system of these hospitals are achieved through proper and adequate evaluation and review of the system.Keywords: internal audit, internal control, federal hospitals, financial frauds
Procedia PDF Downloads 3545581 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations
Authors: Till Gramberg
Abstract:
In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering
Procedia PDF Downloads 835580 An Investigation on the Internal Quality Assurance System of Higher Education in Indonesia
Authors: Andi Mursidi
Abstract:
This study aims to investigate why the internal quality assurance system as the basis for the assessment of external quality assurance systems is not well developed at universities in Indonesia. To answer this problem, technical analysis used single instrumental case study with the respondents from ten universities. The findings of this study are the internal quality assurance system that is applied so far (1) only to gain accreditation; and (2) considered as a liability rather than as a necessity to meet the demands of quality standards. It needs strong commitment from internal stakeholders at the college/university to establish internal quality assurance systems that exceed the national standards of higher education. A high quality college/ university will have a good accreditation rank.Keywords: internal stakeholders, internal quality assurance system, commitment, higher education
Procedia PDF Downloads 2905579 Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column
Authors: Rakesh Kumar Mishra, Tarun Kumar Dan
Abstract:
Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller.Keywords: SISO, lead-lag, internal model control, wood and berry, distillation column
Procedia PDF Downloads 6475578 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 1295577 The Impact of Audit Committee Industry Expertise on Internal Audit Function
Authors: Abdulaziz Alzeban
Abstract:
This study examines whether internal audit function is indeed greater when audit committee members have industry expertise combined with auditing expertise. Data from a survey of 64 chief internal auditors from companies registered on the Saudi Stock Exchange TADAWL, provides results that suggest that when audit committee members possess both industry expertise and auditing expertise, the committee’s role in improving the quality of internal audit is enhanced. This outcome is concluded as one that can be generalized beyond the Saudi Arabian context.Keywords: internal audit, audit committee, industry expertise, function
Procedia PDF Downloads 3575576 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1445575 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 1965574 Impact of Internal Control on Fraud Detection and Prevention: A Survey of Selected Organisations in Nigeria
Authors: Amos Olusola Akinola
Abstract:
The aim of this study is to evaluate the internal control system on fraud prevention in Nigerian business organizations. A survey research was undertaken in five organizations from the banking and manufacturing sectors in Nigeria using the simple random sampling technique and primary data was obtained with the aid structured questionnaire drawn on five likert’s scale. Four Hypotheses were formulated and tested using the T-test Statistics, Correlation and Regression Analysis at 95% confidence interval. It was discovered that internal control has a significant positive relationship with fraud prevention and that a weak internal control system permits fraudulent activities among staff. Based on the findings, it was recommended that organizations should continually and methodically review and evaluate the components of its internal control system whether activities are working as planned or not and that every organization should have pre-determined guidelines for conducting its operations and ensures compliance with these set guidelines while proactive steps should be taken to establish the independence of the internal audit by making the audit reportable to the governing council of an organization and not the chief executive officer.Keywords: internal control, internal system, internal audit, fraud prevention, fraud detection
Procedia PDF Downloads 3855573 Dynamic Synthesis of a Flexible Multibody System
Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui
Abstract:
This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization
Procedia PDF Downloads 3215572 CyberSecurity Malaysia: Towards Becoming a National Certification Body for Information Security Management Systems Internal Auditors
Authors: M. S. Razana, Z. W. Shafiuddin
Abstract:
Internal auditing is one of the most important activities for organizations that implement information security management systems (ISMS). The purpose of internal audits is to ensure the ISMS implementation is in accordance to the ISO/IEC 27001 standard and the organization’s own requirements for its ISMS. Competent internal auditors are the main element that contributes to the effectiveness of internal auditing activities. To realize this need, CyberSecurity Malaysia is now in the process of becoming a certification body that certifies ISMS internal auditors. The certification scheme will assess the competence of internal auditors in generic knowledge and skills in management systems, and also in ISMS-specific knowledge and skills. The certification assessment is based on the ISO/IEC 19011 Guidelines for auditing management systems, ISO/IEC 27007 Guidelines for information security management systems auditing and ISO/IEC 27001 Information security management systems requirements. The certification scheme complies with the ISO/IEC 17024 General requirements for bodies operating certification systems of persons. Candidates who pass the exam will be certified as an ISMS Internal Auditor, whose competency will be evaluated every three years.Keywords: ISMS internal audit, ISMS internal auditor, ISO/IEC 17024, competence, certification
Procedia PDF Downloads 2355571 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 1015570 Internal and External Validity in Experimental Economics
Authors: Helena Chytilova, Robin Maialeh
Abstract:
Experimental economics is subject to criticism with regards to frequently discussed trade-off between internal and external validity requirements, which seems to be critically flawed. Incompatibility of trade-off condition and condition of internal validity as a prerequisite for external validity is presented. In addition, the imprecise concept of artificiality found to be rather improving external validity, seems to strengthen illusory status of external versus internal validity tension. Internal validity will be further analysed with regards to Duhem-Quine problem, where unpredictability argument is significantly weakened trough application of inductivism within the illustrative hypothetical-deductive model. Discussion outlined above partially weakens critical arguments related to robustness of results in experimental economics, if perfectly controlled experimental environment is secured.Keywords: Duhem-Quine problem, external validity, inductivism, internal validity
Procedia PDF Downloads 2865569 Theoretical Approaches to Graphic and Formal Generation from Evolutionary Genetics
Authors: Luz Estrada
Abstract:
The currents of evolutionary materialistic thought have argued that knowledge about an object is not obtained through the abstractive method. That is, the object cannot come to be understood if founded upon itself, nor does it take place by the encounter between form and matter. According to this affirmation, the research presented here identified as a problematic situation the absence of comprehension of the formal creation as a generative operation. This has been referred to as a recurrent lack in the production of objects and corresponds to the need to conceive the configurative process from the reality of its genesis. In this case, it is of interest to explore ways of creation that consider the object as if it were a living organism, as well as responding to the object’s experience as embodied in the designer since it unfolds its genesis simultaneously to the ways of existence of those who are involved in the generative experience.Keywords: architecture, theoretical graphics, evolutionary genetics, formal perception
Procedia PDF Downloads 1185568 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis
Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan
Abstract:
In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.Keywords: discrete fuel bed, fire spread, packing ratio, wildfire
Procedia PDF Downloads 1435567 Using Internal Marketing to Investigate Nursing Staff Job Satisfaction and Turnover Intention
Authors: Tsung Chin Wu, Yu Chen Tsai, Rhay Hung Weng, Weir Sen Lin
Abstract:
In recent years, nursing staff’s lower job satisfaction has led to higher turnover rates, and high turnover rates not only cause medical institution costs to increase but also the quality of medical care to decrease. From the perspective of internal marketing, institution staffs are internal customers, and institutions should focus and meet the needs of staff, so that staff will strive to meet the needs of external customers and provide them with the required care. However, few previous studies have investigated the impact of internal staff satisfaction on external customers. Therefore, this study aimed to conduct job satisfaction surveys on internal staff to investigate the relationship between job satisfaction and quality of medical care through statistical analysis of the study results. The related study results may serve as a reference for healthcare managers. This study was conducted using a questionnaire and the subjects were nursing staff from four hospitals. A total of 600 questionnaires were distributed and 577 valid questionnaires were returned with a response rate of 96.1%. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The impact of internal marketing and job satisfaction on turnover intention of nursing staff was analyzed using descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. The study results showed that there was a significant difference between nursing staff’s job title and ‘professional participation’ and ‘shifts’. There was a significant difference between salary and ‘shifts’ and ‘turnover intention’, as well as between marriage and ‘remuneration’ and ‘turnover intention’. A significant difference was found between professional advancement and ‘professional growth’ and ‘type of leave’, as well as between division of service and ‘shifts’ and ‘turnover intention’. Pearson correlation analysis revealed a significant negative correlation between turnover intention and ‘internal marketing’, ‘interaction’, ‘professional participation’, ‘grasp of environment’, ‘remuneration’ and ‘shifts’, meaning that the higher the satisfaction, the lower the turnover intention. It is recommended that hospitals establish a comprehensive internal marketing mechanism to enhance staff satisfaction and in turn, reduce intention to resign, and the key to increasing job satisfaction is by establishing effective methods of internal communication.Keywords: internal marketing, job satisfaction, turnover intention, nursing staff
Procedia PDF Downloads 1915566 Analysis of a Single Motor Finger Mechanism for a Prosthetic Hand
Authors: Shaukat Ali, Kanber Sedef, Mustafa Yilmaz
Abstract:
This work analyzes a finger mechanism for a prosthetic hand that will help in improving the living standards of people who have lost their hands for a variety of reasons. The finger mechanism is single degree of freedom and hence has advantages such as compact size, reduced mass and less energy consumption. The proposed finger mechanism is a six bar linkage actuated by a single motor. The kinematic, static and dynamic analyses have been done by using the conventional methods of mechanism analysis. The kinematic results present the motion of the proposed finger mechanism and location of the fingertip. The static and dynamic analyses provide the useful information about the gripping force at the fingertip for various configurations and the selection of motor that will move the finger over its range of configuration. This single motor finger mechanism is simple and resembles the human finger’s motion suitable for grasping operation. This study can be used in the optimization of geometrical parameters of the proposed mechanism to obtain the desired configurations with minimum torque and enhanced griping.Keywords: dynamics, finger mechanism, grasping, kinematics
Procedia PDF Downloads 3585565 Internal Migration and Poverty Dynamic Analysis Using a Bayesian Approach: The Tunisian Case
Authors: Amal Jmaii, Damien Rousseliere, Besma Belhadj
Abstract:
We explore the relationship between internal migration and poverty in Tunisia. We present a methodology combining potential outcomes approach with multiple imputation to highlight the effect of internal migration on poverty states. We find that probability of being poor decreases when leaving the poorest regions (the west areas) to the richer regions (greater Tunis and the east regions).Keywords: internal migration, potential outcomes approach, poverty dynamics, Tunisia
Procedia PDF Downloads 3125564 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3905563 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing
Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang
Abstract:
The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.Keywords: additive manufacturing, generative design, robot, sustainability
Procedia PDF Downloads 1335562 Systematic NIR of Internal Disorder and Quality Detection of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji, Saeed Alzahrani
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic convener belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300 nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950 nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950 nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 4975561 New NIR System for Detecting the Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 3985560 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 3865559 Turbulent Channel Flow Synthesis using Generative Adversarial Networks
Authors: John M. Lyne, K. Andrea Scott
Abstract:
In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network
Procedia PDF Downloads 2075558 An Examination of Internal Control System, Executive Duality and Audit Alarm Committee of Listed Nigerian Companies
Authors: Mansur Lubabah Kwanbo
Abstract:
Existing literatures have demonstrated the importance of executive duality (ED) and audit committee (AC) in the financial growth of companies. To some extent this points to corporate governance mechanism aiming at addressing makers and implementers of company policies to be centered on promoting only company objectives. However, furthering organizational objectives needs an adequate structure of control to realize that. Recent development in the various industries in Nigeria have indicated the internal control system (ICS)has not been able to adequately address most of the activities that results in ills of sustaining growth for these industries. It is from this premise the study has as one of its objective to determine the extent to which ICS significantly relates to ED and AC in listed Nigerian corporation. Data were sourced from 308 financial statements and accounts of the corporations that made the sample of the study. Logistic regression aided the test of the hypothesis formulated for the study. Findings revealed a significant relationship between the study variables. The study concludes that the internal control system (ICS) is effective despite the bifurcation of executive duality (ED) and the presence of the Audit Committee (AC) to the extent of preventing ills that encourage lack of sustainability of company’s growth. Sustaining legitimate policies that translate into huge earnings, and create value to stake holders should be pursued.Keywords: audit committee (AC), executive duality (ED), internal control system (ICS), Nigeria
Procedia PDF Downloads 2975557 A Study of Management Principles Incorporating Corporate Governance and Advocating Ethics to Reduce Fraud at a South African Bank
Authors: Roshan Jelal, Charles Mbohwa
Abstract:
In today’s world, internal fraud remains one of the most challenging problems within companies worldwide and despite investment in controls and attention given to the problem, the instances of internal fraud has not abated. To the contrary it appears that internal fraud is on the rise especially in the wake of the economic downturn. Leadership within companies believes that the more sophisticated the controls employed the less likely it would be for employees to pilfer. This is a very antiquated view as investment in controls may not be enough to curtail internal fraud; however, ensuring that a company drives the correct culture and behaviour within the organisation is likely to yield desired results. This research aims to understand how creating a strong ethical culture and embedding the principle of good corporate governance impacts on levels of internal fraud with an organization (a South African Bank).Keywords: internal fraud, corporate governance, ethics, reserve bank, the King Code
Procedia PDF Downloads 4165556 Automation of AAA Game Development Using AI
Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga
Abstract:
The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.Keywords: AAA games, AI, automation tools, game development
Procedia PDF Downloads 285555 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 131