Search results for: hazelnut shell powder
1395 Clinical Study of the Prunus dulcis (Almond) Shell Extract on Tinea capitis Infection
Authors: Nasreen Thebo, W. Shaikh, A. J. Laghari, P. Nangni
Abstract:
Prunus dulcis (Almond) shell extract is demonstrated for its biomedical applications. Shell extract prepared by soxhlet method and further characterized by UV-Visible spectrophotometer, atomic absorption spectrophotometer (AAS), FTIR, GC-MS techniques. In this study, the antifungal activity of almond shell extract was observed against clinically isolated pathogenic fungi by strip method. The antioxidant potential of crude shell extract of was evaluated by using DPPH (2-2-diphenyl-1-picryhydrazyl) and radical scavenging system. The possibility of short term therapy was only 20 days. The total antioxidant activity varied from 94.38 to 95.49% and total phenolic content was found as 4.455 mg/gm in almond shell extract. Finally the results provide a great therapeutic potential against Tinea capitis infection of scalp. Included in this study of shell extract that show scientific evidence for clinical efficacy, as well as found to be more useful in the treatment of dermatologic disorders and without any doubt it can be recommended to be Patent.Keywords: Tinea capitis, DPPH, FTIR, GC-MS therapeutic treatment
Procedia PDF Downloads 3751394 Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing
Authors: Kristine D. de Leon, Junifer A. Abatayo, Jose Cristina M. Pariña
Abstract:
The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.Keywords: anaphoric, cataphoric, lexico-grammatical, shell nouns
Procedia PDF Downloads 1841393 ReS, Resonant String Shell: Development of an Acoustic Shell for Outdoor Chamber Music Concerts
Authors: Serafino Di Rosario
Abstract:
ReS is a sustainable hand-built temporary acoustic shell, developed since 2011 and built during the architectural workshop at Villa Pennisi in Musica in Acireale, Sicily, each year since 2012. The design concept aims to provide a portable structure by reducing the on-site construction problems and the skills required by the builders together with maximizing the acoustic performance for the audience and the musicians. The shell is built using only wood, recycled for the most part, and can be built and dismantled by non-specialized workers in just three days. This paper describes the research process, which spans over four years and presents the final results in form of acoustic simulations performed by acoustic modeling software and real world measurements. ReS is developed by the ReS team who has been presented with the Peter Lord Award in 2015 by the Institute of Acoustics in the UK.Keywords: acoustic shell, outdoor natural amplification, computational design, room acoustics
Procedia PDF Downloads 2261392 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots
Authors: Mohan Singh Mehata, R. K. Ratnesh
Abstract:
CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability
Procedia PDF Downloads 2341391 Experimental Study of Iron Metal Powder Compacting by Controlled Impact
Authors: Todor N. Penchev, Dimitar N. Karastoianov, Stanislav D. Gyoshev
Abstract:
For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force.Keywords: powder metallurgy, impact, iron powder compacting, rocket engine
Procedia PDF Downloads 5191390 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation
Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu
Abstract:
Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses
Procedia PDF Downloads 1321389 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder
Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park
Abstract:
Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling
Procedia PDF Downloads 4631388 A Perspective on Allelopathic Potential of Corylus avellana L.
Authors: Tugba G. Isin Ozkan, Yoshiharu Fujii
Abstract:
One of the most important constrains that decrease the crop yields are weeds. Increased amount and number of chemical herbicides are being utilized every day to control weeds. Chemical herbicides which cause environmental effects, and limitations on implementation of them have led to the nonchemical alternatives in the management of weeds. It is needed increasingly the application of allelopathy as a nonherbicidal innovation to control weed populations in integrated weed management. It is not only because of public concern about herbicide use, but also increased agricultural costs and herbicide resistance weeds. Allelopathy is defined as a common biological phenomenon, direct or indirect interaction which one plant or organism produces biochemicals influence the physiological processes of another neighboring plant or organism. Biochemicals involved in allelopathy are called allelochemicals that influence beneficially or detrimentally the growth, survival, development, and reproduction of other plant or organisms. All plant parts could have allelochemicals which are secondary plant metabolites. Allelochemicals are released to environment, influence the germination and seedling growth of neighbors' weeds; that is the way how allelopathy is applied for weed control. Crop cultivars have significantly different ability for inhibiting the growth of certain weeds. So, a high commercial value crop Corylus avellana L. and its byproducts were chosen to introduce for their allelopathic potential in this research. Edible nut of Corylus avellana L., commonly known as hazelnut is commercially valuable crop with byproducts; skin, hard shell, green leafy cover, and tree leaf. Research on allelopathic potential of a plant by using the sandwich bioassay method and investigation growth inhibitory activity is the first step to develop new and environmentally friendly alternatives for weed control. Thus, the objective of this research is to determine allelopathic potential of C. avellana L. and its byproducts by using sandwich method and to determine effective concentrations (EC) of their extracts for inducing half-maximum elongation inhibition on radicle of test plant, EC50. The sandwich method is reliable and fast bioassay, very useful for allelopathic screening under laboratory conditions. In experiments, lettuce (Lactuca sativa L.) seeds will be test plant, because of its high sensitivity to inhibition by allelochemicals and reliability for germination. In sandwich method, the radicle lengths of dry material treated lettuce seeds and control lettuce seeds will be measured and inhibition of radicle elongation will be determined. Lettuce seeds will also be treated by the methanol extracts of dry hazelnut parts to calculate EC₅₀ values, which are required to induce half-maximal inhibition of growth, as mg dry weight equivalent mL-1. Inhibitory activity of extracts against lettuce seedling elongation will be evaluated, like in sandwich method, by comparing the radicle lengths of treated seeds with that of control seeds and EC₅₀ values will be determined. Research samples are dry parts of Turkish hazelnut, C. avellana L. The results would suggest the opportunity for allelopathic potential of C. avellana L. with its byproducts in plant-plant interaction, might be utilized for further researches, could be beneficial in finding bioactive chemicals from natural products and developing of natural herbicides.Keywords: allelopathy, Corylus avellana L., EC50, Lactuca sativa L., sandwich method, Turkish hazelnut
Procedia PDF Downloads 1731387 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells
Authors: M. Altekin, R. F. Yükseler
Abstract:
Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.Keywords: Bending, Nonlinear, Plate, Point support, Shell.
Procedia PDF Downloads 2621386 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant
Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi
Abstract:
To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia
Procedia PDF Downloads 2961385 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles
Authors: I. Graur, V. Bria, C. Muntenita
Abstract:
Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.Keywords: epoxy, friction coefficient, organic powder, pine needles
Procedia PDF Downloads 1741384 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs
Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan
Abstract:
The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg
Procedia PDF Downloads 2031383 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell
Procedia PDF Downloads 4411382 Some Investigations of Primary Slurry Used for Production of Ceramic Shells
Authors: Balwinder Singh
Abstract:
In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration.Keywords: ceramic shell, primary slurry, filler, slurry viscosity, surface roughness
Procedia PDF Downloads 4731381 Production of Banana Milk Powder Using Spray and Freeze Dryer
Authors: Siti Noor Suzila Maqsood-Ul-Haque, Ummi Kalthum Ibrahim, Norekanadirah Abdul Rahman
Abstract:
Banana are rich in vitamins, potassium and carbohydrate.The objective for this research work is to produce banana milk powder that can help children that suffers from constipation. Two types of the most common dryers used for this purpose are the spray and freeze dryer. The effects of the type of dryers, pump feed speed in the spray dryer and the ratio proportion of the banana milk powder were investigated in the study. The result indicate that increasing proportion ratio of the banana milk powder produce lower yield of the powder.From the result it is also concluded that speed 2 is more suitable in the production of the banana milk powder since the value of the moisture content is lower.Keywords: freeze dryer, spray dryer, moisture content, dissolution, banana, milk
Procedia PDF Downloads 4921380 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties
Procedia PDF Downloads 3131379 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis
Authors: Haider M. Alsaeq
Abstract:
The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element
Procedia PDF Downloads 3901378 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil
Authors: Saimatun Nisa
Abstract:
Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.Keywords: walnut shell, biooil, biochar, microwave pyrolysis
Procedia PDF Downloads 501377 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs
Authors: Yunzhe Tong, Jun Fan, Bin Wang
Abstract:
The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis
Procedia PDF Downloads 2071376 Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete
Authors: Talah Aissa
Abstract:
This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).Keywords: marble powder, durability, concrete, cement
Procedia PDF Downloads 2881375 Transforming the Hazelnut Supply Chain: Opportunities and Challenges for Ontario Agri-Businesses
Authors: Kalinga Jagoda
Abstract:
With changing population demographics and consumer preferences, specialty crops present significant opportunities for Ontario agri-businesses to develop niche markets. However, the greater rewards offered by such opportunities come with comparable challenges that are driven by specific productmarket attributes, as well as supply and demand-side factors, including certain risks. Thus, initiatives to promote and support such sectors need to be informed by an understanding of the impact of these product-market and industry specific factors on supply chain development. To this end, this project proposes to map selected specialty crops supply chains, using a suite of tested methodological approaches to evaluate their market potential, considering total supply chain costs, lead times and responsiveness. The project will deliver comprehensive supply chain maps identifying the points of value addition and value capture that are of benefit to key stakeholders for the purposes of developing policy interventions, conducting market appraisals and identifying industry best practices.Keywords: supply chain management, hazelnut industry, supply chain maps, market opportunity
Procedia PDF Downloads 471374 Improving Physicochemical Properties of Milk Powder and Lactose-Free Milk Powder with the Prebiotic Carrier
Authors: Chanunya Fahwan, Supat Chaiyakul
Abstract:
A lactose-free diet is imperative for those with lactose intolerance and experiencing milk intolerance. This entails eliminating milk-based products, which may result in dietary and nutritional challenges and the main problems of Lactose hydrolyzed milk powder during production were the adhesion in the drying chamber and low-yield and low-quality powder. The use of lactose-free milk to produce lactose-free milk powder was studied here. Development of two milk powder formulas from cow's milk and lactose-free cow's milk by using a substitute for maltodextrin, Polydextrose (PDX), Resistant Starch (RS), Cellobiose (CB), and Resistant Maltodextrin (RMD) to improve quality and reduce the glycemic index from maltodextrin, which are carriers that were used in industry at three experimental levels 10%, 15% and 20% the properties of milk powder were studied such as color, moisture content, percentage yield (%yield) and solubility index. The experiment revealed that prebiotic carriers could replace maltodextrin and improve quality, such as solubility and percentage yield, and enriched nutrients, such as dietary fiber. CB, RMD, and PDX are three possible carriers, which are applied to both regular cow's milk formula and lactose-free cow milk.Keywords: lactose-free milk powder, prebiotic carrier, co-particle, glycemic index
Procedia PDF Downloads 801373 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture
Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou
Abstract:
Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.Keywords: concrete, mineral admixture, hydration, structure
Procedia PDF Downloads 3251372 Obtaining Nutritive Powder from Peel of Mangifera Indica L. (Mango) as a Food Additive
Authors: Chajira Garrote, Laura Arango, Lourdes Merino
Abstract:
This research explains how to obtain nutritious powder from a variety of ripe mango peels Hilacha (Mangifera indica L.) to use it as a food additive. Also, this study intends to use efficiently the by-products resulting from the operations of mango pulp manufacturing process by processing companies with the aim of giving them an added value. The physical and chemical characteristics of the mango peels and the benefits that may help humans, were studied. Unit operations are explained for the processing of mango peels and the production of nutritive powder as a food additive. Emphasis is placed on the preliminary operations applied to the raw material and on the drying method, which is very important in this project to obtain the suitable characteristics of the nutritive powder. Once the powder was obtained, it was subjected to laboratory tests to determine its functional properties: water retention capacity (WRC) and oil retention capacity (ORC), also a sensory analysis for the powder was performed to determine the product profile. The nutritive powder from the ripe mango peels reported excellent WRC and ORC values: 7.236 g of water / g B.S. and 1.796 g water / g B.S. respectively and the sensory analysis defined a complete profile of color, odor and texture of the nutritive powder, which is suitable to use it in the food industry.Keywords: mango, peel, powder, nutritive, functional properties, sensory analysis
Procedia PDF Downloads 3521371 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents
Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain
Abstract:
Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.Keywords: activated carbon, palm shell-PEEK, regeneration, thermal
Procedia PDF Downloads 4841370 Physico-Chemical and Sensory Properties of Orange Marmalade Supplemented with Aloe vera Powder
Authors: Farhat Rashid
Abstract:
A study was conducted at the Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan, to evaluate the effect of different concentration of Aloe vera (Aloe barbadensis Mill.) powder on physicochemical and sensory properties of orange marmalade. All treatments (0, 2, 4 6, 8 and 10% Aloe vera powder) were analyzed for titratable acidity, TSS, pH, moisture, fat, fiber and protein contents. The data indicated gradual increase in titratable acidity (0.08 to 0.18%), moisture (0.23 to 0.48%), protein (0.09 to 0.40%) and fiber (0.12 to 1.03%) among all treatments with increasing concentration of Aloe vera powder. However, a decreasing trend in pH (3.81 to 2.74), TSS (68 to 56 °Brix) and fat content (1.1 to 0.08%) was noticed with gradual increase in concentration of Aloe vera powder in orange marmalade. Sensory attributes like color, taste, texture, flavor and overall acceptability were found acceptable among all treatments but T1 (2% Aloe vera powder) was liked most and T5 (10% Aloe vera powder) was least appealing to the judges. It is concluded from present study that the addition of different concentrations of Aloe vera powder in orange marmalade significantly affected the physicochemical and sensory properties of marmalade.Keywords: orange marmalade, Aloe vera, Aloe barbadensis mill, physicochemical, characteristics, organoleptic properties, Pakistan, treatments, significance
Procedia PDF Downloads 3561369 Durability Study of Binary Blended High Performance Concrete
Authors: Vatsal Patel, Niraj Shah
Abstract:
This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement.Keywords: accelerated corrosion, binary blended cementitious system, rapid chloride penetration, sorptivity
Procedia PDF Downloads 3851368 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite
Authors: Ganesh V., Asit Kumar Khanra
Abstract:
An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy
Procedia PDF Downloads 171367 Evaluation of Growth Performance and Survival Rate of African Catfish (Clarias gariepinus) Fed with Graded Levels of Egg Shell Substituted Ration
Authors: A. Bello-Olusoji, M. O. Sodamola, Y. A. Adejola, D. D Akinbola
Abstract:
An eight (8) weeks study was carried out on Four hundred and five (405) African catfish (Clarias gariepinus) juveniles to examine the effect of graded levels of egg shell on their growth performance and survival rates. They were acclimatized for two (2) weeks after which they were weighed and allotted into five dietary treatments of three (3) replicates each and 27 fishes per replicate making a total number of eighty-one (81) fishes per treatment. The dietary treatments contained 0, 25, 50, 75 and 100(%) egg shell inclusion from treatment one to treatment five respectively. Parameter on daily feed intake, weekly weight gain, and daily mortalities were recorded. The result of the experiment indicated that treatment four (4) with 75% inclusion of egg shell was the best in terms of weight gain and survival rates and was significantly different (P<0.05) when compared with the other treatments. For Catfish farming to remain viable in the nearest future, lower feed cost and increased profit are required; it is therefore recommended that diets of African catfish (Clarias gariepinus) be supplemented with well processed egg shell at 75% level of inclusion to achieve this.Keywords: African catfish, egg shell, performance, performance, survival rate, weight gain
Procedia PDF Downloads 3851366 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum
Authors: Dipali Nagaonkar, Mahendra Rai
Abstract:
Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction
Procedia PDF Downloads 570