Search results for: governing differential equation
3728 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5523727 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers
Authors: H. Ozbasaran
Abstract:
IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.Keywords: cantilever, IPN, IPE, lateral torsional buckling
Procedia PDF Downloads 5383726 Proposal of Design Method in the Semi-Acausal System Model
Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented
Procedia PDF Downloads 4833725 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal
Procedia PDF Downloads 5453724 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field
Authors: Deva Kanta Phukan
Abstract:
An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder
Procedia PDF Downloads 3983723 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method
Authors: A. Selmi
Abstract:
Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.Keywords: differential transformation method, functionally graded material, mode shape, natural frequency
Procedia PDF Downloads 3073722 A Series Solution of Fuzzy Integro-Differential Equation
Authors: Maryam Mosleh, Mahmood Otadi
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method
Procedia PDF Downloads 5563721 A Study of Flow near the Leading Edge of a Flat Plate by New Idea in Analytical Methods
Authors: M. R. Akbari, S. Akbari, L. Abdollahpour
Abstract:
The present paper is concerned with calculating the 2-dimensional velocity profile of a viscous flow for an incompressible fluid along the leading edge of a flat plate by using the continuity and motion equations with a simple and innovative approach. A Comparison between Numerical method and AGM has been made and the results have been revealed that AGM is very accurate and easy and can be applied for a wide variety of nonlinear problems. It is notable that most of the differential equations can be solved in this approach which in the other approaches they do not have this capability. Moreover, there are some valuable benefits in this method of solving differential equations, for instance: Without any dimensionless procedure, we can solve many differential equation(s), that is, differential equations are directly solvable by this method. In addition, it is not necessary to convert variables into new ones. According to the afore-mentioned expressions which will be proved in this literature, the process of solving nonlinear differential equation(s) will be very simple and convenient in contrast to the other approaches.Keywords: leading edge, new idea, flat plate, incompressible fluid
Procedia PDF Downloads 2853720 Study of Composite Beam under the Effect of Shear Deformation
Authors: Hamid Hamli Benzahar
Abstract:
The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.Keywords: composite beam, shear deformation, moments, finites elements
Procedia PDF Downloads 743719 On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis
Authors: Rahul Saini, Roshan Lal
Abstract:
The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature.Keywords: bi-directionally FG, GDQM, Mindlin’s circular plate, neutral axis, vibrations
Procedia PDF Downloads 1293718 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 983717 Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls
Authors: A. B. Disu, M. S. Dada
Abstract:
This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters.Keywords: differential transform method, MHD free convection, porous medium, two dimensional radiation, two wavy walls
Procedia PDF Downloads 4463716 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities
Authors: Sumit Kumar Vishwakarma
Abstract:
The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity
Procedia PDF Downloads 1253715 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals
Authors: Masoud Ghermezi
Abstract:
Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory
Procedia PDF Downloads 3643714 Finite Element Method for Solving the Generalized RLW Equation
Authors: Abdel-Maksoud Abdel-Kader Soliman
Abstract:
The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations
Procedia PDF Downloads 4883713 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 2903712 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method
Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi
Abstract:
In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.Keywords: boundary conditions, buckling, non-local, differential transform method
Procedia PDF Downloads 3003711 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls
Authors: Ramdas Sonawane, Mahaveer Gadiya
Abstract:
The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations
Procedia PDF Downloads 4423710 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion
Procedia PDF Downloads 3563709 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation
Procedia PDF Downloads 3873708 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process
Authors: Mary Chriselda A
Abstract:
This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations
Procedia PDF Downloads 1993707 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 2263706 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique
Authors: Hassen M. Ouakad
Abstract:
In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin
Procedia PDF Downloads 2283705 Solving Momentum and Energy Equation by Using Differential Transform Techniques
Authors: Mustafa Ekici
Abstract:
Natural convection is a basic process which is important in a wide variety of practical applications. In essence, a heated fluid expands and rises from buoyancy due to decreased density. Numerous papers have been written on natural or mixed convection in vertical ducts heated on the side. These equations have been proved to be valuable tools for the modelling of many phenomena such as fluid dynamics. Finding solutions to such equations or system of equations are in general not an easy task. We propose a method, which is called differential transform method, of solving a non-linear equations and compare the results with some of the other techniques. Illustrative examples shows that the results are in good agreement.Keywords: differential transform method, momentum, energy equation, boundry value problem
Procedia PDF Downloads 4593704 Emergency Treatment of Methanol Poisoning: A Mathematical Approach
Authors: Priyanka Ghosh, Priti Kumar Roy
Abstract:
Every year a considerable number of people die due to methyl alcohol poisoning, in which most of them die even before proper treatment. This work gives a simple and cheap first aid to those affected individuals by the administration of activated charcoal. In this article, we emphasise on the adsorption capability of activated charcoal for the treatment of poisoning and use an impulsive differential equation to study the effect of activated charcoal during adsorption. We also investigate the effects of various parameters on the adsorption which are incorporated in the model system.Keywords: activated charcoal, adsorption, impulsive differential equation, methanol poisoning
Procedia PDF Downloads 3073703 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method
Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey
Abstract:
Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear
Procedia PDF Downloads 1283702 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage
Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour
Abstract:
This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage
Procedia PDF Downloads 4553701 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji
Abstract:
In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical
Procedia PDF Downloads 4623700 Application of a Modified Crank-Nicolson Method in Metallurgy
Authors: Kobamelo Mashaba
Abstract:
The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation
Procedia PDF Downloads 983699 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji
Abstract:
In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed
Procedia PDF Downloads 379