Search results for: geo-spatial
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 161

Search results for: geo-spatial

131 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example

Authors: Jiajun Lu, Yun Ma

Abstract:

As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.

Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis

Procedia PDF Downloads 9
130 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 137
129 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census

Authors: Jaroslav Kraus

Abstract:

Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.

Keywords: census, geo-demography, households, the Czech Republic

Procedia PDF Downloads 96
128 Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa

Authors: Davies Obaromi, Qin Yongsong, James Ndege

Abstract:

To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.

Keywords: linear, biharmonic splines, tuberculosis, South Africa

Procedia PDF Downloads 238
127 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 375
126 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 508
125 Urbanization and Income Inequality in Thailand

Authors: Acumsiri Tantikarnpanit

Abstract:

This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.

Keywords: income inequality, nighttime light, population density, Thailand, urbanization

Procedia PDF Downloads 76
124 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
123 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria

Authors: Aminu Abdullahi Isyaku

Abstract:

Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.

Keywords: Bornu Basin, lineaments, spectral lithology, tectonics

Procedia PDF Downloads 139
122 Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria

Authors: Babawale Akin Adeyemi, Esan Temitayo, Adeyemi Olabisi Omowumi

Abstract:

The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data.

Keywords: assessment, geospatial, system, waste disposal

Procedia PDF Downloads 238
121 Geospatial Techniques for Impact Assessment of Canal Rehabilitation Program in Sindh, Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi, Muhammad Arslan Hafeez

Abstract:

Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system of the world comprising Indus River and its tributaries, canals, distributaries, and watercourses. A big challenge faced by IBIS is transmission losses through seepage and leaks that account to 41 percent of the total water derived from the river and about 40 percent of that is through watercourses. Irrigation system rehabilitation programs in Pakistan are focused on improvement of canal system at the watercourse level (tertiary channels). Under these irrigation system management programs more than 22,800 watercourses have been improved or lined out of 43,000 (12,900 Kilometers) watercourses. The evaluation of the improvement work is required at this stage to testify the success of the programs. In this paper, emerging technologies of GIS and satellite remote sensing are used for impact assessment of watercourse rehabilitation work in Sindh. To evaluate the efficiency of the improved watercourses, few parameters are selected like soil moisture along watercourses, availability of water at tail end and changes in cultivable command areas. Improved watercourses details and maps are acquired from National Program for Improvement of Watercourses (NPIW) and Space and Upper Atmospheric Research Commission (SUPARCO). High resolution satellite images of Google Earth for the year of 2004 to 2013 are used for digitizing command areas. Temporal maps of cultivable command areas show a noticeable increase in the cultivable land served by improved watercourses. Field visits are conducted to validate the results. Interviews with farmers and landowners also reveal their overall satisfaction in terms of availability of water at the tail end and increased crop production.

Keywords: geospatial, impact assessment, watercourses, GIS, remote sensing, seepage, canal lining

Procedia PDF Downloads 350
120 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions

Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer

Abstract:

The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.

Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping

Procedia PDF Downloads 211
119 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 581
118 Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps

Authors: Tali Neta

Abstract:

Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment.

Keywords: citizen science, litter pollution, Open Litter Map, GIS Story Map

Procedia PDF Downloads 79
117 Spatio-Temporal Analysis of Land Use Change and Green Cover Index

Authors: Poonam Sharma, Ankur Srivastav

Abstract:

Cities are complex and dynamic systems that constitute a significant challenge to urban planning. The increasing size of the built-up area owing to growing population pressure and economic growth have lead to massive Landuse/Landcover change resulted in the loss of natural habitat and thus reducing the green covers in urban areas. Urban environmental quality is influenced by several aspects, including its geographical configuration, the scale, and nature of human activities occurring and environmental impacts generated. Cities have transformed into complex and dynamic systems that constitute a significant challenge to urban planning. Cities and their sustainability are often discussed together as the cities stand confronted with numerous environmental concerns as the world becoming increasingly urbanized, and the cities are situated in the mesh of global networks in multiple senses. A rapid transformed urban setting plays a crucial role to change the green area of natural habitats. To examine the pattern of urban growth and to measure the Landuse/Landcover change in Gurgoan in Haryana, India through the integration of Geospatial technique is attempted in the research paper. Satellite images are used to measure the spatiotemporal changes that have occurred in the land use and land cover resulting into a new cityscape. It has been observed from the analysis that drastically evident changes in land use has occurred with the massive rise in built up areas and the decrease in green cover and therefore causing the sustainability of the city an important area of concern. The massive increase in built-up area has influenced the localised temperatures and heat concentration. To enhance the decision-making process in urban planning, a detailed and real world depiction of these urban spaces is the need of the hour. Monitoring indicators of key processes in land use and economic development are essential for evaluating policy measures.

Keywords: cityscape, geospatial techniques, green cover index, urban environmental quality, urban planning

Procedia PDF Downloads 277
116 Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems

Authors: Masoud Swalehe, Semra Günay

Abstract:

Developed countries are losing many lives to non-communicable diseases as compared to their developing counterparts. The effects of these diseases are mostly sudden and manifest at a very short time prior to death or a dangerous attack and this has consolidated the significance of emergency medical system (EMS) as one of the vital areas of healthcare service delivery. The primary objective of this research is to reduce ambulance response times (RT) of Eskişehir province EMS since a number of studies have established a relationship between ambulance response times and survival chances of patients especially out of hospital cardiac arrest (OHCA) victims. It has been found out that patients who receive out of hospital medical attention in few (4) minutes after cardiac arrest because of low ambulance response times stand higher chances of survival than their counterparts who take longer times (more than 12 minutes) to receive out of hospital medical care because of higher ambulance response times. The study will make use of geographic information systems (GIS) technology to dynamically reallocate ambulance resources according to demand and time so as to reduce ambulance response times. Geospatial-time distribution of ambulance calls (demand) will be used as a basis for optimal ambulance deployment using system status management (SSM) strategy to achieve much demand coverage with the same number of ambulance resources to cause response time reduction. Drive-time polygons will be used to come up with time specific facility coverage areas and suggesting additional facility candidate sites where ambulance resources can be moved to serve higher demands making use of network analysis techniques. Emergency Ambulance calls’ data from 1st January 2014 to 31st December 2014 obtained from Eskişehir province health directorate will be used in this study. This study will focus on the reduction of ambulance response times which is a key Emergency Medical Services performance indicator.

Keywords: emergency medical services, system status management, ambulance response times, geographic information system, geospatial-time distribution, out of hospital cardiac arrest

Procedia PDF Downloads 300
115 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing

Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin

Abstract:

As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.

Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia

Procedia PDF Downloads 129
114 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 108
113 Monitoring Land Cover/Land Use Change in Rupandehi District by Optimising Remotely Sensed Image

Authors: Hritik Bhattarai

Abstract:

Land use and land cover play a crucial role in preserving and managing Earth's natural resources. Various factors, such as economic, demographic, social, cultural, technological, and environmental processes, contribute to changes in land use and land cover (LULC). Rupandehi District is significantly influenced by a combination of driving forces, including its geographical location, rapid population growth, economic opportunities, globalization, tourism activities, and political events. Urbanization and urban growth in the region have been occurring in an unplanned manner, with internal migration and natural population growth being the primary contributors. Internal migration, particularly from neighboring districts in the higher and lower Himalayan regions, has been high, leading to increased population growth and density. This study utilizes geospatial technology, specifically geographic information system (GIS), to analyze and illustrate the land cover and land use changes in the Rupandehi district for the years 2009 and 2019, using freely available Landsat images. The identified land cover categories include built-up area, cropland, Das-Gaja, forest, grassland, other woodland, riverbed, and water. The statistical analysis of the data over the 10-year period (2009-2019) reveals significant percentage changes in LULC. Notably, Das-Gaja shows a minimal change of 99.9%, while water and forest exhibit increases of 34.5% and 98.6%, respectively. Riverbed and built-up areas experience changes of 95.3% and 39.6%, respectively. Cropland and grassland, however, show concerning decreases of 102.6% and 140.0%, respectively. Other woodland also indicates a change of 50.6%. The most noteworthy trends are the substantial increase in water areas and built-up areas, leading to the degradation of agricultural and open spaces. This emphasizes the urgent need for effective urban planning activities to ensure the development of a sustainable city. While Das-Gaja seems unaffected, the decreasing trends in cropland and grassland, accompanied by the increasing built-up areas, are unsatisfactory. It is imperative for relevant authorities to be aware of these trends and implement proactive measures for sustainable urban development.

Keywords: land use and land cover, geospatial, urbanization, geographic information system, sustainable urban development

Procedia PDF Downloads 60
112 Reducing Flood Risk through Value Capture and Risk Communication: A Case Study in Cocody-Abidjan

Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama

Abstract:

Abidjan city (Republic of Ivory Coast) is an emerging megacity and an urban coastal area where the number of floods reported is on a rapid increase due to climate change and unplanned urbanization. However, comprehensive disaster mitigation plans, policies, and financial resources are still lacking as the population ignores the extent and location of the flood zones; making them unprepared to mitigate the damages. Considering the existing condition, this paper aims to discuss an approach for flood risk reduction in Cocody Commune through value capture strategy and flood risk communication. Using geospatial techniques and hydrological simulation, we start our study by delineating flood zones and depths under several return periods in the study area. Then, through a questionnaire a field survey is conducted in order to validate the flood maps, to estimate the flood risk and to collect some sample of the opinion of residents on how the flood risk information disclosure could affect the values of property located inside and outside the flood zones. The results indicate that the study area is highly vulnerable to 5-year floods and more, which can cause serious harm to human lives and to properties as demonstrated by the extent of the 5-year flood of 2014. Also, it is revealed there is a high probability that the values of property located within flood zones could decline, and the values of surrounding property in the safe area could increase when risk information disclosure commences. However in order to raise public awareness of flood disaster and to prevent future housing promotion in high-risk prospective areas, flood risk information should be disseminated through the establishment of an early warning system. In order to reduce the effect of risk information disclosure and to protect the values of property within the high-risk zone, we propose that property tax increments in flood free zones should be captured and be utilized for infrastructure development and to maintain the early warning system that will benefit people living in flood prone areas. Through this case study, it is shown that combination of value capture strategy and risk communication could be an effective tool to educate citizen and to invest in flood risk reduction in emerging countries.

Keywords: Cocody-Abidjan, flood, geospatial techniques, risk communication, value capture

Procedia PDF Downloads 273
111 Identification of Suitable Sites for Rainwater Harvesting in Salt Water Intruded Area by Using Geospatial Techniques in Jafrabad, Amreli District, India

Authors: Pandurang Balwant, Ashutosh Mishra, Jyothi V., Abhay Soni, Padmakar C., Rafat Quamar, Ramesh J.

Abstract:

The sea water intrusion in the coastal aquifers has become one of the major environmental concerns. Although, it is a natural phenomenon but, it can be induced with anthropogenic activities like excessive exploitation of groundwater, seacoast mining, etc. The geological and hydrogeological conditions including groundwater heads and groundwater pumping pattern in the coastal areas also influence the magnitude of seawater intrusion. However, this problem can be remediated by taking some preventive measures like rainwater harvesting and artificial recharge. The present study is an attempt to identify suitable sites for rainwater harvesting in salt intrusion affected area near coastal aquifer of Jafrabad town, Amreli district, Gujrat, India. The physico-chemical water quality results show that out of 25 groundwater samples collected from the study area most of samples were found to contain high concentration of Total Dissolved Solids (TDS) with major fractions of Na and Cl ions. The Cl/HCO3 ratio was also found greater than 1 which indicates the salt water contamination in the study area. The geophysical survey was conducted at nine sites within the study area to explore the extent of contamination of sea water. From the inverted resistivity sections, low resistivity zone (<3 Ohm m) associated with seawater contamination were demarcated in North block pit and south block pit of NCJW mines, Mitiyala village Lotpur and Lunsapur village at the depth of 33 m, 12 m, 40 m, 37 m, 24 m respectively. Geospatial techniques in combination of Analytical Hierarchy Process (AHP) considering hydrogeological factors, geographical features, drainage pattern, water quality and geophysical results for the study area were exploited to identify potential zones for the Rainwater Harvesting. Rainwater harvesting suitability model was developed in ArcGIS 10.1 software and Rainwater harvesting suitability map for the study area was generated. AHP in combination of the weighted overlay analysis is an appropriate method to identify rainwater harvesting potential zones. The suitability map can be further utilized as a guidance map for the development of rainwater harvesting infrastructures in the study area for either artificial groundwater recharge facilities or for direct use of harvested rainwater.

Keywords: analytical hierarchy process, groundwater quality, rainwater harvesting, seawater intrusion

Procedia PDF Downloads 173
110 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 267
109 The Spatial Analysis of Wetland Ecosystem Services Valuation on Flood Protection in Tone River Basin

Authors: Tingting Song

Abstract:

Wetlands are significant ecosystems that provide a variety of ecosystem services for humans, such as, providing water and food resources, purifying water quality, regulating climate, protecting biodiversity, and providing cultural, recreational, and educational resources. Wetlands also provide benefits, such as reduction of flood, storm damage, and soil erosion. The flood protection ecosystem services of wetlands are often ignored. Due to climate change, the flood caused by extreme weather in recent years occur frequently. Flood has a great impact on people's production and life with more and more economic losses. This study area is in the Tone river basin in the Kanto area, Japan. It is the second-longest river with the largest basin area in Japan, and it is still suffering heavy economic losses from floods. Tone river basin is one of the rivers that provide water for Tokyo and has an important impact on economic activities in Japan. The purpose of this study was to investigate land-use changes of wetlands in the Tone River Basin, and whether there are spatial differences in the value of wetland functions in mitigating economic losses caused by floods. This study analyzed the land-use change of wetland in Tone River, based on the Landsat data from 1980 to 2020. Combined with flood economic loss, wetland area, GDP, population density, and other social-economic data, a geospatial weighted regression model was constructed to analyze the spatial difference of wetland ecosystem service value. Now, flood protection mainly relies on such a hard project of dam and reservoir, but excessive dependence on hard engineering will cause the government huge financial pressure and have a big impact on the ecological environment. However, natural wetlands can also play a role in flood management, at the same time they can also provide diverse ecosystem services. Moreover, the construction and maintenance cost of natural wetlands is lower than that of hard engineering. Although it is not easy to say which is more effective in terms of flood management. When the marginal value of a wetland is greater than the economic loss caused by flood per unit area, it may be considered to rely on the flood storage capacity of the wetland to reduce the impact of the flood. It can promote the sustainable development of wetlands ecosystem. On the other hand, spatial analysis of wetland values can provide a more effective strategy for flood management in the Tone river basin.

Keywords: wetland, geospatial weighted regression, ecosystem services, environment valuation

Procedia PDF Downloads 101
108 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya

Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse

Abstract:

Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.

Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data

Procedia PDF Downloads 139
107 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 347
106 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 71
105 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 120
104 Planning of Green Infrastructure on a City Level

Authors: James Li, Darko Joksimovic

Abstract:

Urban development changes the natural hydrologic cycle, resulting in storm water impacts such as flooding, water quality degradation, receiving water erosion, and ecosystem deterioration. An integrated storm water managementapproach utilizing source and conveyance (termed green infrastructure) and end-of-pipe control measures is an effective way to manage urban storm water impacts. This paper focuses onplanning green infrastructure (GI) at the source and along the drainage system on a city level. It consists of (1)geospatial analysis of feasible GI using physical suitability; (2) modelling of cumulative GI's stormwater performance; and (3) cost-effectiveness analysis to prioritize the implementation of GI. A case study of the City of Barrie in Ontario, Canada, was used to demonstrate the GI's planning.

Keywords: cost-effectiveness of storm water controls, green infrastructure, urban storm water, city-level master planning

Procedia PDF Downloads 98
103 The Study of Dengue Fever Outbreak in Thailand Using Geospatial Techniques, Satellite Remote Sensing Data and Big Data

Authors: Tanapat Chongkamunkong

Abstract:

The objective of this paper is to present a practical use of Geographic Information System (GIS) to the public health from spatial correlation between multiple factors and dengue fever outbreak. Meteorological factors, demographic factors and environmental factors are compiled using GIS techniques along with the Global Satellite Mapping Remote Sensing (RS) data. We use monthly dengue fever cases, population density, precipitation, Digital Elevation Model (DEM) data. The scope cover study area under climate change of the El Niño–Southern Oscillation (ENSO) indicated by sea surface temperature (SST) and study area in 12 provinces of Thailand as remote sensing (RS) data from January 2007 to December 2014.

Keywords: dengue fever, sea surface temperature, Geographic Information System (GIS), remote sensing

Procedia PDF Downloads 198
102 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 109