Search results for: bio-inspired pitching airfoils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 77

Search results for: bio-inspired pitching airfoils

47 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems

Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland

Abstract:

Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.

Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up

Procedia PDF Downloads 113
46 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 138
45 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 260
44 Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft

Authors: Kartik Gupta, Umar Khan, Mayur Parab, Dhiraj Chaudhari, Afzal Ansari

Abstract:

The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD.

Keywords: wind tunnel testing, CFD, stabilizer, stabilator

Procedia PDF Downloads 60
43 Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle

Authors: Pratyush Agnihotri

Abstract:

This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments.

Keywords: fixed wing, hybrid, VTOL, UAV

Procedia PDF Downloads 19
42 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 172
41 Copper (II) Complex of New Tetradentate Asymmetrical Schiff Base Ligand: Synthesis, Characterization, and Catecholase-Mimetic Activity

Authors: Cahit Demetgul, Sahin Bayraktar, Neslihan Beyazit

Abstract:

Metalloenzymes are enzyme proteins containing metal ions, which are directly bound to the protein or to enzyme-bound nonprotein components. One of the major metalloenzymes that play a key role in oxidation reactions is catechol oxidase, which shows catecholase activity i.e. oxidation of a broad range of catechols to quinones through the four-electron reduction of molecular oxygen to water. Studies on the model compounds mimicking the catecholase activity are very useful and promising for the development of new, more efficient bioinspired catalysts, for in vitro oxidation reactions. In this study, a new tetradentate asymmetrical Schiff-base and its Cu(II) complex were synthesized by condensation of 4-nitro-1,2-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Cu(II) salt, respectively. The prepared compounds were characterized by elemental analysis, FT-IR, NMR, UV-Vis and magnetic susceptibility. The catecholase-mimicking activity of the new Schiff Base Cu(II) complex was performed for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in methanol at 25 °C, where the electronic spectra were recorded at different time intervals. The yield of the quinone (3,5-DTBQ) was determined from the measured absorbance at 400 nm of the resulting solution. The compatibility of catalytic reaction with Michaelis-Menten kinetics was also investigated. In conclusion, we have found that our new Schiff Base Cu(II) complex presents a significant capacity to catalyze the oxidation reaction of the catechol to o-quinone.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 310
40 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling

Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón

Abstract:

Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.

Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD

Procedia PDF Downloads 487
39 Decoupled Dynamic Control of Unicycle Robot Using Integral Linear Quadratic Regulator and Sliding Mode Controller

Authors: Shweda Mohan, J. L. Nandagopal, S. Amritha

Abstract:

This paper focuses on the dynamic modelling of unicycle robot. Two main concepts used for balancing unicycle robot are: reaction wheel pendulum and inverted pendulum. The pitch axis is modelled as inverted pendulum and roll axis is modelled as reaction wheel pendulum. The unicycle yaw dynamics is not considered which makes the derivation of dynamics relatively simple. For the roll controller, sliding-mode controller has been adopted and optimal methods are used to minimize switching-function chattering. For pitch controller, an LQR controller has been implemented to drive the unicycle robot to follow the desired velocity trajectory. The pitching and rolling balance could be achieved by two DC motors. Unicycle robot is a non-holonomic, non-linear, static unbalance system that has the minimal number of point contact to the ground, therefore, it is a perfect platform for researchers to study motion and balance control. These real-time solutions will be a viable solution for advanced robotic systems and controls.

Keywords: decoupled dynamics, linear quadratic regulator (LQR) control, Lyapunov function sliding mode control, unicycle robot, velocity and trajectory control

Procedia PDF Downloads 363
38 Body Armours in Amazonian Fish

Authors: Fernando G. Torres, Donna M. Ebenstein, Monica Merino

Abstract:

Most fish are covered by a protective external armour. The characteristics of these armours depend on the individual elements that form them, such as scales, scutes or dermal plates. In this work, we assess the properties of two different types of protective elements: scales from A. gigas and dermal plates from P. pardalis. A. Gigas and P. Pardalis are two Amazonian fish with a rather prehistoric aspect. They have large scales and dermal plates that form two different types of protective body armours. Although both scales and dermal plates are formed by collagen and hydroxyapatite, their structures display remarkable differences. The structure and composition of the samples were assessed by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Morphology studies were carried out using a Scanning Electron Microscopy (SEM). Nanoindentation tests were performed to measure the reduced moduli in A. gigas scales and P. pardalis plates. The similarities and differences between scales and dermal plates are discussed based on the experimental results. Both protective armours are designed to be lightweight, flexible and tough. A. Gigas scales are are light laminated composites, while P. pardalis dermal plates show a sandwich like structure with dense outer layers and a porous inner matrix. It seems that the armour of P. pardalis is more suited for a bottom-dwelling fish and allows for protection against predators. The scales from A. Gigas are more adapted to give protection to a swimming fish. The information obtained from these studies is also important for the development of bioinspired nanocomposites, with potential applications in the biomedical field.

Keywords: pterygoplichthys pardalis, dermal plates arapaima gigas, fish scales

Procedia PDF Downloads 391
37 The Relevance of Bioinspired Architecture and Programmable Materials for Development of 4D Printing

Authors: Daniela Ribeiro, Silvia Lenyra Meirelles Campos Titotto

Abstract:

Nature has long served as inspiration for humans, since various technologies present in society are a mirror of the natural world. This is due to the fact that nature has adapted for millions of years to possess the characteristics they have today. In this sense, man takes advantage of this situation and uses it to produce his own objects and solve his problems. This concept, which is known as biomimetics, is something relatively new, once it was only denominated in 1957. Nature, in turn, responds directly and consistently to environmental conditions. For example, plants that have touch sensitivity contract with this stimulus. Such a situation resembles a technology that has been gaining ground in the contemporary world of scientific innovation: 4D printing. 4D printing technology emerged in 2012 as a complement to 3D printing and presents numerous benefits since it provides a deficiency in the second kind of printing mentioned. This type of technology reaches several areas, since it is capable of producing materials that change over time, be it in its composition, form or properties and is such a characteristic that determines the additional dimension of the material. Precisely because of these factors, this type of impression resembles nature and is related to biomimetics. However, only certain types of ‘intelligent’ materials are generally employed in this type of impression, since only they will respond well to such stimuli, one of which is the hydrogel. The hydrogel is a biocompatible polymer that presents several applications, these in turn will be briefly mentioned in this article to exemplify its importance and the reason for choosing this material as object of study. In addition, aspects that configure 4D printing will be treated here, such as the importance of architecture, programming language and the reversibility of printed materials.

Keywords: 4D printing, biomimetic, hydrogel, materials

Procedia PDF Downloads 169
36 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight

Authors: S. M. Dash, K. B. Lua, T. T. Lim

Abstract:

This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.

Keywords: two-dimensional flapping airfoil, thrust performance, effective angle of attack, CFD, experiments

Procedia PDF Downloads 358
35 Numerical Study of Trailing Edge Serrations on a Wells Turbine

Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson

Abstract:

The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.

Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration

Procedia PDF Downloads 101
34 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 586
33 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations

Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo

Abstract:

Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.

Keywords: propulsion, flapping foils, hydrodynamics, wave power

Procedia PDF Downloads 61
32 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 504
31 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 320
30 Numerical Investigation of the Flow Around Multi-Element Airfoils

Authors: Taylan Ozturk, Osama Maklad

Abstract:

This study examines the aerodynamic and flow properties of a multi-element airfoil using computational fluid dynamics (CFD) research. This computational analysis aims to optimize slat design concerning lift-drag coefficients and to determine the ideal gap size between the main airfoil and the front flap. It examines the influence of varying angles of attack and the effects of varied Reynolds numbers. A NACA 2412 airfoil, equipped with custom-designed front and rear flaps, was modeled in SolidWorks and simulated in ANSYS Fluent utilizing the k-ω SST turbulence model. This study quantifies lift and drag coefficients, turbulent kinetic energy, and vorticity magnitude across various configurations. The results clearly indicate that the slat-optimized design geometry featuring a 4 mm gap provides the best performance regarding both lift and drag, with maximum efficiency achieved at a 4-degree angle of attack. Furthermore, the results indicate the initiation of stall conditions beyond 20 degrees and demonstrate how an increase in Reynolds numbers influences flow separation and turbulence patterns. In addition, the maximum L/D ratio which is 36.18 achieved. These findings enhance the comprehension of multi-element airfoil behavior, directly impacting aircraft design and operation, particularly in high-lift situations.

Keywords: multi-element airfoil, CFD simulation, aerodynamic characteristics, Reynolds number analysis

Procedia PDF Downloads 21
29 Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder

Authors: N. Kiran, S. A. Vikas, Yatish Chandra, S. Srinivasan

Abstract:

Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder.

Keywords: aerodynamics, airfoil, spinning cylinder, stalling

Procedia PDF Downloads 440
28 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil

Procedia PDF Downloads 275
27 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam

Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin

Abstract:

As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.

Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45

Procedia PDF Downloads 375
26 Effects of Aircraft Wing Configuration on Aerodynamic Efficiency

Authors: Aderet Pantierer, Shmuel Pantierer, Atif Saeed, Amir Elzawawy

Abstract:

In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective.

Keywords: aerodynamics, aircraft design, aircraft efficiency, wing configuration, wing design

Procedia PDF Downloads 263
25 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 193
24 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 134
23 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication

Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali

Abstract:

Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.

Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws

Procedia PDF Downloads 6
22 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application

Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius

Abstract:

Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.

Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural

Procedia PDF Downloads 142
21 Entrepreneurship in Pakistan: Opportunities and Challenges

Authors: Bushra Jamil, Nudrat Baqri, Muhammad Hassan Saeed

Abstract:

Entrepreneurship is creating or setting up a business not only for the purpose of generating profit but also for providing job opportunities. Entrepreneurs are problem solvers and product developers. They use their financial asset for hiring a professional team and combine the innovation, knowledge, and leadership leads to a successful startup or a business. To be a successful entrepreneur, one should be people-oriented and have perseverance. One must have the ability to take risk, believe in his/her potential, and have the courage to move forward in all circumstances. Most importantly, have the ability to take risk and can assess the risk. For STEM students, entrepreneurship is of specific importance and relevance as it helps them not just to be able to solve real life existing complications but to be able to recognize and identify emerging needs and glitches. It is becoming increasingly apparent that in today’s world, there is a need as well as a desire for STEM and entrepreneurship to work together. In Pakistan, entrepreneurship is slowly emerging, yet we are far behind. It is high time that we should introduce modern teaching methods and inculcate entrepreneurial initiative in students. A course on entrepreneurship can be included in the syllabus, and we must invite businessmen and policy makers to motivate young minds for entrepreneurship. This must be pitching competitions, opportunities to win seed funding, and facilities of incubation centers. In Pakistan, there are many good public sector research institutes, yet there is a void gap in the private sector. Only few research institute are meant for research and development. BJ Micro Lab is one of them. It is SECP registered company and is working in academia to promote and facilitate research in STEM. BJ Micro Lab is a women led initiative, and we are trying to promote research as a passion, not as an arduous burden. For this, we are continuously arranging training workshops and sessions. More than 100 students have been trained in ten different workshops arranged at BJ Micro Lab.

Keywords: entrepreneurship, STEM, challenges, oppurtunties

Procedia PDF Downloads 129
20 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 458
19 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 405
18 Redox-Mediated Supramolecular Radical Gel

Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay

Abstract:

In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.

Keywords: Ionic-gel, redox-cycle, self-assembly, useful product

Procedia PDF Downloads 84