Search results for: TEA domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1773

Search results for: TEA domain

1743 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 641
1742 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.

Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein

Procedia PDF Downloads 354
1741 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain

Procedia PDF Downloads 408
1740 Effective Method of Paneling for Source/Vortex/Doublet Panel Methods Using Conformal Mapping

Authors: K. C. R. Perera, B. M. Hapuwatte

Abstract:

This paper presents an effective method to divide panels for mesh-less methods of source, vortex and doublet panel methods. In this research study the physical domain of air-foils were transformed into computational domain of a circle using conformal mapping technique of Joukowsky transformation. Then the circle is divided into panels of equal length and the co-ordinates were remapped into physical domain of the air-foil. With this method the leading edge and the trailing edge of the air-foil is panelled with a high density of panels and the rest of the body is panelled with low density of panels. The high density of panels in the leading edge and the trailing edge will increase the accuracy of the solutions obtained from panel methods where the fluid flow at the leading and trailing edges are complex.

Keywords: conformal mapping, Joukowsky transformation, physical domain, computational domain

Procedia PDF Downloads 376
1739 Effect of Al Contents on Magnetic Domains of {100} Grains in Electrical Steels

Authors: Hyunseo Choi, Jaewan Hong, Seil Lee, Yang Mo Koo

Abstract:

Non-oriented (NO) electrical steel is one of the most important soft magnetic materials for rotating machines. Si has usually been added to electrical steels to reduce eddy current loss by increasing the electrical resistivity. Si content more than 3.5 wt% causes cracks during cold rolling due to increase of brittleness. Al also increases the electrical resistivity of the materials as much as Si. In addition, cold workability of Fe-Al is better than Fe-Si, so that Al can be added up to 6.0 wt%. However, the effect of Al contents on magnetic properties of electrical steels has not been studied in detail. Magnetic domains of {100} grains in electrical steels, ranging from 1.85 to 6.54 wt% Al, were observed by magneto-optic Kerr microscopy. Furthermore, the correlation of magnetic domains with magnetic properties was investigated. As Al contents increased, the magnetic domain size of {100} grains decreased due to lowered domain wall energy. Reorganization of magnetic domain structure became more complex as domain size decreased. Therefore, the addition of Al to electrical steel caused hysteresis loss to increase. Anomalous loss decreased and saturated after 4.68% Al.

Keywords: electrical steel, magnetic domain structure, Al addition, core loss, rearrangement of domains

Procedia PDF Downloads 243
1738 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain

Procedia PDF Downloads 466
1737 Genome-Wide Isoform Specific KDM5A/JARID1A/RBP2 Location Analysis Reveals Contribution of Chromatin-Interacting PHD Domain in Protein Recruitment to Binding Sites

Authors: Abul B. M. M. K. Islam, Nuria Lopez-Bigas, Elizaveta V. Benevolenskaya

Abstract:

RBP2 has shown to be important for cell differentiation control through epigenetic mechanism. The main aim of the present study is genome-wide location analysis of human RBP2 isoforms that differ in a histone-binding domain by ChIPseq. It is conceivable that the larger isoform (LI) of RBP2, which contains a specific H3K4me3 interacting domain, differs from the smaller isoform (SI) in genomic location, may account for the observed diversity in RBP2 function. To distinguish the two RBP2 isoforms, we used the fact that the SI lacks the C-terminal PHD domain and hence used the antibodies detecting both RBP2 isoforms (AI) through a common central domain, and the antibodies detecting only LI but not SI, through a C-terminal PHD domain. Overall our analysis suggests that RBP2 occupies about 77 nucleotides and binds GC rich motifs of active genes, does not bind to centromere, telomere, or enhancer regions, and binding sites are conserved compare to random. A striking difference between the only-SI and only-LI is that a large number of only-SI peaks are located in CpG islands and close to TSS compared to only-LI peaks. Enrichment analysis of the related genes indicates that several oncogenic pathways and metabolic pathways/processes are significantly enriched among only-SI/AI targets, but not LI/only-LI peak’s targets.

Keywords: bioinformatics, cancer, ChIP-seq, KDM5A

Procedia PDF Downloads 307
1736 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava

Abstract:

In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.

Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation

Procedia PDF Downloads 242
1735 Integer Programming: Domain Transformation in Nurse Scheduling Problem.

Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu

Abstract:

Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.

Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation

Procedia PDF Downloads 397
1734 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 396
1733 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases

Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal

Abstract:

This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.

Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare

Procedia PDF Downloads 112
1732 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle

Procedia PDF Downloads 549
1731 Molecular Characterization of Two Thermoplastic Biopolymer-Degrading Fungi Utilizing rRNA-Based Technology

Authors: Nuha Mansour Alhazmi, Magda Mohamed Aly, Fardus M. Bokhari, Ahmed Bahieldin, Sherif Edris

Abstract:

Out of 30 fungal isolates, 2 new isolates were proven to degrade poly-β-hydroxybutyrate (PHB). Enzyme assay for these isolates indicated the optimal environmental conditions required for depolymerase enzyme to induce the highest level of biopolymer degradation. The two isolates were basically characterized at the morphological level as Trichoderma asperellum (isolate S1), and Aspergillus fumigates (isolate S2) using standard approaches. The aim of the present study was to characterize these two isolates at the molecular level based on the highly diverged rRNA gene(s). Within this gene, two domains of the ribosome large subunit (LSU) namely internal transcribed spacer (ITS) and 26S were utilized in the analysis. The first domain comprises the ITS1/5.8S/ITS2 regions ( > 500 bp), while the second domain comprises the D1/D2/D3 regions ( > 1200 bp). Sanger sequencing was conducted at Macrogen (Inc.) for the two isolates using primers ITS1/ITS4 for the first domain, while primers LROR/LR7 for the second domain. Sizes of the first domain ranged between 594-602 bp for S1 isolate and 581-594 bp for S2 isolate, while those of the second domain ranged between 1228-1238 bp for S1 isolate and 1156-1291 for S2 isolate. BLAST analysis indicated 99% identities of the first domain of S1 isolate with T. asperellum isolates XP22 (ID: KX664456.1), CTCCSJ-G-HB40564 (ID: KY750349.1), CTCCSJ-F-ZY40590 (ID: KY750362.1) and TV (ID: KU341015.1). BLAST of the first domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other T. asperellum and A. fumigatus isolates and strains showed high level of identities with S1 and S2 isolates, respectively, based on the diversity of the first domain. BLAST of the second domain of S1 isolate indicated 99 and 100% identities with only two strains of T. asperellum namely TR 3 (ID: HM466685.1) and G (ID: KF723005.1), respectively. However, other T. species (ex., atroviride, hamatum, deliquescens, harzianum, etc.) also showed high level of identities. BLAST of the second domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other A. fumigatus isolates and strains showed high level of identities with S2 isolate. Overall, the results of molecular characterization based on rRNA diversity for the two isolates of T. asperellum and A. fumigatus matched those obtained by morphological characterization. In addition, ITS domain proved to be more sensitive than 26S domain in diversity profiling of fungi at the species level.

Keywords: Aspergillus fumigates, Trichoderma asperellum, PHB, degradation, BLAST, ITS, 26S, rRNA

Procedia PDF Downloads 159
1730 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 105
1729 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
1728 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element

Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao

Abstract:

V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.

Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm

Procedia PDF Downloads 172
1727 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition

Authors: Qin Long, Li Xiaoge

Abstract:

The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.

Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network

Procedia PDF Downloads 93
1726 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 155
1725 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 373
1724 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
1723 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations

Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari

Abstract:

The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.

Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation

Procedia PDF Downloads 460
1722 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 371
1721 Content Based Face Sketch Images Retrieval in WHT, DCT, and DWT Transform Domain

Authors: W. S. Besbas, M. A. Artemi, R. M. Salman

Abstract:

Content based face sketch retrieval can be used to find images of criminals from their sketches for 'Crime Prevention'. This paper investigates the problem of CBIR of face sketch images in transform domain. Face sketch images that are similar to the query image are retrieved from the face sketch database. Features of the face sketch image are extracted in the spectrum domain of a selected transforms. These transforms are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Walsh Hadamard Transform (WHT). For the performance analyses of features selection methods three face images databases are used. These are 'Sheffield face database', 'Olivetti Research Laboratory (ORL) face database', and 'Indian face database'. The City block distance measure is used to evaluate the performance of the retrieval process. The investigation concludes that, the retrieval rate is database dependent. But in general, the DCT is the best. On the other hand, the WHT is the best with respect to the speed of retrieving images.

Keywords: Content Based Image Retrieval (CBIR), face sketch image retrieval, features selection for CBIR, image retrieval in transform domain

Procedia PDF Downloads 493
1720 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors

Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri

Abstract:

Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.

Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods

Procedia PDF Downloads 135
1719 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 56
1718 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 492
1717 Career Anchors and Domain Specialization in Management Education: A Deviation Analysis

Authors: Santosh Kumar Sharma

Abstract:

In view of management education with special reference to India, it has been noted that students have deviations between their career anchors and domain of specialization. As a consequence, they face problems in their summer internships and placements in the corporate sector. Eventually, they either change their career track or leave the management profession, which is a serious concern from the perspective of human capital. However, there is no substantial literature in the given context. Therefore, the present study contributes to the global discourse of management education and its spillover effect on human resource management. The objective of the present study is to analyze the deviation between career anchors and domain specialization with reference to management education in India. The present study is exploratory in nature, wherein data has been collected from a significant number of post-graduate students who are pursuing management education from a premium business school in India, followed by descriptive analysis. The present research contributes to the professional development of management students from the perspective of human capital, which is eventually related to various factors of the Indian economy.

Keywords: India, management education, domain specialization, placements

Procedia PDF Downloads 87
1716 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 446
1715 New Approach to Interactional Dynamics of E-mail Correspondence

Authors: Olga Karamalak

Abstract:

The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.

Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function

Procedia PDF Downloads 579
1714 Domain Adaptive Dense Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, contrastive learning, unsupervised training

Procedia PDF Downloads 103