Search results for: learning paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7611

Search results for: learning paths

1731 Humor- A Systematic Review To Understand the Effect of Humor in Artificial Intelligence, Medicine, Workplace, Culture, Coping and Education

Authors: Tannu Taluja, Kanchan Yadav

Abstract:

Humor is a global language of general emotions that everyone knows. Humor has a vast range of dimensions, functions, and styles. The current paper explained humor and also reviewed how it is used in artificial intelligence. It aimed how health professionals and teachers can use humor to ameliorate well-being and education and how humor differs among various culture. If used successfully, humor can boost relationships and productivity. The paper aimed to review how one can use humor as a pain reliever, in learning, in writing journals, improving quality of life. It also discussed about the findings about the purpose and impact of humor usage, the results of humor use on individual and leaders organisational leadership, and the important factors where humor can be identified and synthesised. Data was obtained from the PubMed, Frontier, PsycNet, Elsevier, Science Direct and other internet sources like Google Scholar. From 981 articles, irrelevant or inaccessible studies were eliminated, reducing the number of final articles chosen for review to 19. The current analysis not only compiles data from more than four decades of research, but it also makes various recommendations for future research on humor in artificial intelligence, medicine, workplace, culture, coping and education.

Keywords: artificial intelligence, culture, coping, education, humor, medicine, workplace

Procedia PDF Downloads 6
1730 Searchable Encryption in Cloud Storage

Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption

Procedia PDF Downloads 385
1729 Challenges and Opportunities Presented by Linguistic Diversity in Nursing Education Settings: An Integrative Literature Review

Authors: Ditebogo Morapedi Collen Mabulana, Kholofelo L. Matlhaba

Abstract:

Introduction and background: Cultural and linguistic diversity in nursing education settings has become increasingly prevalent due to globalization and the growing multicultural populations in many countries. Purpose: The purpose is to examine and synthesize existing research on the challenges and opportunities presented by cultural and linguistic diversity in nursing education settings with the intention of providing a comprehensive understanding of the implications for nursing education. Methods: The review encompasses a comprehensive analysis of relevant literature from various databases. Findings: Language barriers, communication challenges and cultural differences between nursing students and facilitators are identified as challenges of cultural and linguistic diversity in nursing education settings. Conclusions: In order to provide patients with high-quality care and to shape nursing practice in the future in a multicultural and interconnected world, it is imperative that nursing education support cultural and linguistic diversity. Contributions: Nursing education settings are becoming increasingly diverse, with students and facilitators coming from a variety of cultural and linguistic backgrounds. While this diversity presents numerous opportunities for learning and growth.

Keywords: challenges, linguistic diversity, integrative literature review, nursing education, opportunities

Procedia PDF Downloads 12
1728 A Comparative Study of Natural Language Processing Models for Detecting Obfuscated Text

Authors: Rubén Valcarce-Álvarez, Francisco Jáñez-Martino, Rocío Alaiz-Rodríguez

Abstract:

Cybersecurity challenges, including scams, drug sales, the distribution of child sexual abuse material, fake news, and hate speech on both the surface and deep web, have significantly increased over the past decade. Users who post such content often employ strategies to evade detection by automated filters. Among these tactics, text obfuscation plays an essential role in deceiving detection systems. This approach involves modifying words to make them more difficult for automated systems to interpret while remaining sufficiently readable for human users. In this work, we aim at spotting obfuscated words and the employed techniques, such as leetspeak, word inversion, punctuation changes, and mixed techniques. We benchmark Named Entity Recognition (NER) using models from the BERT family as well as two large language models (LLMs), Llama and Mistral, on XX_NER_WordCamouflage dataset. Our experiments evaluate these models by comparing their precision, recall, F1 scores, and accuracy, both overall and for each individual class.

Keywords: natural language processing (NLP), text obfuscation, named entity recognition (NER), deep learning

Procedia PDF Downloads 13
1727 Exploring a Teaching Model in Cultural Education Using Video-Focused Social Networking Apps: An Example of Chinese Language Teaching for African Students

Authors: Zhao Hong

Abstract:

When international students study Chinese as a foreign or second language, it is important for them to form constructive viewpoints and possess an open mindset on Chinese culture. This helps them to make faster progress in their language acquisition. Observations from African students at Liaoning Institute of Science and Technology show that by integrating video-focused social networking apps such as Tiktok (“Douyin”) on a controlled basis, students raise their interest not only in making an effort in learning the Chinese language, but also in the understanding of the Chinese culture. During the last twelve months, our research group explored a teaching model using selected contents in certain classroom settings, including virtual classrooms during lockdown periods due to the COVID-19 pandemic. Using interviews, a survey was conducted on international students from African countries at the Liaoning Institute of Science and Technology in Chinese language courses. Based on the results, a teaching model was built for Chinese language acquisition by entering the "mobile Chinese culture".

Keywords: Chinese as a foreign language, cultural education, social networking apps, teaching model

Procedia PDF Downloads 77
1726 Corpus-Based Description of Core English Nouns of Pakistani English, an EFL Learner Perspective at Secondary Level

Authors: Abrar Hussain Qureshi

Abstract:

Vocabulary has been highlighted as a key indicator in any foreign language learning program, especially English as a foreign language (EFL). It is often considered a potential tool in foreign language curriculum, and its deficiency impedes successful communication in the target language. The knowledge of the lexicon is very significant in getting communicative competence and performance. Nouns constitute a considerable bulk of English vocabulary. Rather, they are the bones of the English language and are the main semantic carrier in spoken and written discourse. As nouns dominate the bulk of the English lexicon, their role becomes all the more potential. The undertaken research is a systematic effort in this regard to work out a list of highly frequent list of Pakistani English nouns for the EFL learners at the secondary level. It will encourage autonomy for the EFL learners as well as will save their time. The corpus used for the research has been developed locally from leading English newspapers of Pakistan. Wordsmith Tools has been used to process the research data and to retrieve word list of frequent Pakistani English nouns. The retrieved list of core Pakistani English nouns is supposed to be useful for English language learners at the secondary level as it covers a wide range of speech events.

Keywords: corpus, EFL, frequency list, nouns

Procedia PDF Downloads 109
1725 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 114
1724 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 236
1723 Modern Nahwu's View about the Theory of Amil

Authors: Kisno Umbar

Abstract:

Arabic grammar (nahwu) is one of the most important disciplines to learn about the Islamic literature (kitab al-turats). In the last century, learning Arabic grammar was difficult for both the Arabian or non-Arabian native. Most of the traditional nahwu scholars viewed that the theory of amil is a major problem. The views had influenced large number of modern nahwu scholars, and some of them refuse the theory of amil to simplify Arabic grammar to make it easier. The aim of the study is to compare many views of the modern nahwu scholars about the theory of amil including their reasons. In addition, the study is to reveal whether they follow classic scholars or give a view. The author uses literature study approach to get data of modern nahwu scholars from their books as a primary resource. As a secondary resource, the author uses the updated relevant researches from journals about the theory of amil. Besides, the author put on several resources from the traditional nahwu scholars to compare the views. The analysis showed the contrasting views about the theory of amil. Most of the scholars refuse the amil because it isn’t originally derived from Arabic tradition, but it is influenced by Aristotelian philosophy. The others persistently use the amil inasmuch as it is one of the characteristics that differ Arabic language and other languages.

Keywords: Arabic grammar, Amil, Arabic tradition, Aristotelian philosophy

Procedia PDF Downloads 164
1722 The Effectiveness of Dialectical Behavior Therapy in Developing Emotion Regulation Skill for Adolescent with Intellectual Disability

Authors: Shahnaz Safitri, Rose Mini Agoes Salim, Pratiwi Widyasari

Abstract:

Intellectual disability is characterized by significant limitations in intellectual functioning and adaptive behavior that appears before the age of 18 years old. The prominent impacts of intellectual disability in adolescents are failure to establish interpersonal relationships as socially expected and lower academic achievement. Meanwhile, it is known that emotion regulation skills have a role in supporting the functioning of individual, either by nourishing the development of social skills as well as by facilitating the process of learning and adaptation in school. This study aims to look for the effectiveness of Dialectical Behavior Therapy (DBT) in developing emotion regulation skills for adolescents with intellectual disability. DBT's special consideration toward clients’ social environment and their biological condition is foreseen to be the key for developing emotion regulation capacity for subjects with intellectual disability. Through observations on client's behavior, conducted before and after the completion of DBT intervention program, it was found that there is an improvement in client's knowledge and attitudes related to the mastery of emotion regulation skills. In addition, client's consistency to actually practice emotion regulation techniques over time is largely influenced by the support received from the client's social circles.

Keywords: adolescent, dialectical behavior therapy, emotion regulation, intellectual disability

Procedia PDF Downloads 311
1721 Storytelling as a Pedagogical Tool to Learn English Language in Higher Education: Using Reflection and Experience to Improve Learning

Authors: Barzan Hadi Hama Karim

Abstract:

The purpose of this research study is to determine how educators, students at the university level are using storytelling to support the educational process. This study provides a general framework about educational uses of storytelling as a pedagogical too to learn English language in the higher education and describes the different perceptions of people (teachers and students) at different levels. A survey is used to collect responses from a group of educators and students in educational settings to determine how they are using storytelling for educational purposes. The results show the current situation of educational uses of storytelling and explore some of the benefits and challenges educators face in implementing storytelling in their institutions. The purpose of our research is to investigate the impact of storytelling as a pedagogical tool to learn English language in higher education and its academic achievements on ESL students. It highlights findings that address the following questions: (1) How has storytelling been approached historically? (2) Is storytelling beneficial for students in early grades at university? (3) To what extent do teacher and student prefer storytelling as a pedagogical tool to teach and learn English language in higher education?

Keywords: storytelling, teacher's beliefs, student’s beliefs, student’s academic achievement, narrative, pedagogy, ESL

Procedia PDF Downloads 396
1720 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 458
1719 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 111
1718 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments

Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam

Abstract:

The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.

Keywords: daily living activities, smart homes, single-user environment, multi-user environment

Procedia PDF Downloads 145
1717 Development and Evaluation of Preceptor Training Program for Nurse Preceptors in King Chulalongkorn Memorial Hospital

Authors: Pataraporn Kheawwan

Abstract:

Preceptorship represents an important aspect in new nurse orientation. However, there was no formal preceptor training program developed for nurse preceptor in Thailand. The purposes of this study were to develop and evaluate formal preceptor training program for nurse preceptors in King Chulalongkorn Memorial Hospital, Thailand. A research and development study design was utilized in this study. Participants were 37 nurse preceptors. The program contents were delivered by e-learning material, class lecture, group discussion followed by simulation training. Knowledge of the participants was assessed pre and post program. Skill and critical thinking were assessed using Preceptor Skill and Decision Making Evaluation form at the end of program. Statistical significant difference in knowledge regarding preceptor role and coaching strategies between pre and post program were found. All participants had satisfied skill and decision making score after completed the program. Most of participants perceived benefits of preceptor training course. In conclusion, The results of this study reveal that the newly developed preceptorship course is an effective formal training course for nurse preceptors.

Keywords: preceptor, preceptorship, new nurse, clinical education

Procedia PDF Downloads 263
1716 Flo: Period-Tracking App with AI Powered Tools

Authors: Dania Baaboud, Renad Al-zahrani, Mahnoor Khan, Riya Afroz

Abstract:

Flo is a smart period-tracking tool that uses artificial intelligence (AI) to offer individualized reproductive health predictions and insights. Flo makes very accurate predictions about menstrual cycles, ovulation, and fertility windows by evaluating user inputs, including cycle duration, symptoms, and patterns. Its machine learning algorithms are constantly evolving, providing personalized health recommendations, instructional materials, and early identification of possible health abnormalities such as reproductive problems and hormone imbalances. Flo, which was introduced in 2015 and upgraded with AI in 2017, is a revolutionary use of technology in healthcare that empowers people to make knowledgeable decisions regarding their well-being. Despite its advantages, our study included drawbacks, such as limited access to premium services and a small sample size. While highlighting unique characteristics, a comparative comparison with similar applications such as Clue and Glow confirmed Flo's outstanding AI integration for individualized healthcare. All things considered, Flo is a prime example of how AI can be used to tackle intricate biological processes, giving consumers the ability to efficiently control their reproductive health and opening the door for improvements in individualized medical technology.

Keywords: Flo, period-tracking app, period symptoms, women’s health, machinery

Procedia PDF Downloads 11
1715 Thai Student Teachers' Prior Understanding of Nature of Science (NOS)

Authors: N. Songumpai, W. Sumranwanich, S. Chatmaneerungcharoen

Abstract:

This research aims to study the understanding of 8 aspects of nature of science (NOS). The research participants were 39 General Science student teachers who were selected by purposive sampling. In 2015 academic year, they enrolled in the course of Science Education Learning Management. Qualitative research was used as research methodology to understand how the student teachers propose on NOS. The research instruments consisted of open-ended questionnaires and semi-structure interviews that were used to assess students’ understanding of NOS. Research data was collected by 8 items- questionnaire and was categorized into students’ understanding of NOS, which consisted of complete understanding (CU), partial understanding (PU), misunderstanding (MU) and no understanding (NU). The findings reveal the majority of students’ misunderstanding of NOS regarding the aspects of theory and law(89.7%), scientific method(61.5%) and empirical evidence(15.4%) respectively. From the interview data, the student teachers present their misconceptions of NOS that indicate about theory and law cannot change; science knowledge is gained through experiment only (step by step); science is the things that are around humans. These results suggest that for effective science teacher education, the composition of design of NOS course needs to be considered. Therefore, teachers’ understanding of NOS is necessary to integrate into professional development program/course for empowering student teachers to begin their careers as strong science teachers in schools.

Keywords: nature of science, student teacher, no understanding, misunderstanding, partial understanding, complete understanding

Procedia PDF Downloads 266
1714 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 104
1713 English as a Foreign Language Students’ Perceptions towards the British Culture: The Case of Batna 2 University, Algeria

Authors: Djelloul Nedjai

Abstract:

The issue of cultural awareness triggers many controversies, especially in a context where individuals do not share the same cultural backgrounds and characteristics. The Algerian context is no exception. It has been widely documented by the literature that culture remains essential in many domains. In higher education, for instance, culture plays a pivotal role in shaping individuals’ perceptions and attitudes. Henceforth, the current paper attempts to look at the perceptions of the British culture held by students engaged in learning English as a Foreign Language (EFL) at the department of English at Banta 2 University, Algeria. It also inquires into EFL students’ perceptions of British culture. To address the aforementioned research queries, a descriptive study has been carried out wherein a questionnaire of fifteen (15) items has been deployed to collect students’ attitudes and perceptions toward British culture. Results showcase that, indeed, EFL students of the department of English at Banta 2 University hold both positive and negative perceptions towards British culture at different levels. The explanation could relate to the student's lack of acquaintance with and awareness of British culture. Consequently, this paper is an attempt to address the issue of cultural awareness from the perspective of EFL students.

Keywords: British culture, cultural awareness, EFL students’ perceptions, higher education

Procedia PDF Downloads 93
1712 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 67
1711 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 190
1710 Digital Economy as an Alternative for Post-Pandemic Recovery in Latin America: A Literature Review

Authors: Armijos-Orellana Ana, González-Calle María, Maldonado-Matute Juan, Guerrero-Maxi Pedro

Abstract:

Nowadays, the digital economy represents a fundamental element to guarantee economic and social development, whose importance increased significantly with the arrival of the COVID-19 pandemic. However, despite the benefits it offers, it can also be detrimental to those developing countries characterized by a wide digital divide. It is for this reason that the objective of this research was to identify and describe the main characteristics, benefits, and obstacles of the digital economy for Latin American countries. Through a bibliographic review, using the analytical-synthetic method in the period 1995-2021, it was determined that the digital economy could give way to structural changes, reduce inequality, and promote processes of social inclusion, as well as promote the construction and participatory development of organizational structures and institutional capacities in Latin American countries. However, the results showed that the digital economy is still incipient in the region and at least three factors are needed to establish it: joint work between academia, the business sector and the State, greater emphasis on learning and application of digital transformation and the creation of policies that encourage the creation of digital organizations.

Keywords: developing countries, digital divide, digital economy, digital literacy, digital transformation

Procedia PDF Downloads 143
1709 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia

Authors: Madara Apsalone

Abstract:

Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.

Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors

Procedia PDF Downloads 393
1708 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation

Authors: Anne Eugenia Wright

Abstract:

This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.

Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All

Procedia PDF Downloads 148
1707 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 442
1706 Advocating for Indigenous Music in Latin American Music Education

Authors: Francisco Luis Reyes

Abstract:

European colonization had a profound impact on Latin America. The influence of the old continent can be perceived in the culture, religion, and language of the region as well as the beliefs and attitudes of the population. Music education is not an exception to this phenomenon. With Europeans controlling cultural life and erecting educational institutions across the continent for several centuries, Western European Art Music (WEAM) has polarized music learning in formal spaces. In contrast, the musics from the indigenous population, the African slaves, and the ones that emerged as a result of the cultural mélanges have largely been excluded from primary and secondary schooling. The purpose of this paper is to suggest the inclusion of indigenous music education in primary and secondary music education. The paper employs a philosophical inquiry in order to achieve this aim. Philosophical inquiry seeks to uncover and examine individuals' unconscious beliefs, principles, values, and assumptions to envision potential possibilities. This involves identifying and describing issues within current music teaching and learning practices. High-quality philosophical research tackles problems that are sufficiently narrow (addressing a specific aspect of a single complex topic), realistic (reflecting the experiences of music education), and significant (addressing a widespread and timely issue). Consequently, this methodological approach fits this topic, as the research addresses the omnipresence of WEAM in Latin American music education, the exclusion of indigenous music, and argues about the transformational impact said artistic expressions can have on practices in the region. The paper initially addresses how WEAM became ubiquitous in the region by recounting historical events, and adressing the issues other types of music face entering higher education. According to Shifres and Rosabal-Coto (2017) Latin America still upholds the musical heritage of their colonial period, and its formal music education institutions promote the European ontology instilled during European expansion. In accordance, the work of Reyes and Lorenzo-Quiles (2024), and Soler, Lorenzo-Quiles, and Hargreaves (2014), demonstrate how music institutions in the region uphold foreign narratives. Their studies show that music programs in Puerto Rico and Colombia instruct students in WEAM as well as require skills in said art form to enter the profession, just like other authors have argued (Cain & Walden, 2019, Walden, 2016). Subsequently, the research explains the issues faced by prospective music educators that do not practice WEAM. Roberts (1991a, 1991b, 1993), Green (2012) have found that music education students that do not adhere to the musical culture of their institution, are less likely to finish their degrees. Hence, practicioners of tradional musics might feel out of place in the environment. The ubiquity of WEAM and the exclusion of traditional musics of the region, provide the primary challenges to the inclusion of indigenous musics in formal spaces in primary and secondary education. The presentation then laids the framework for the inclusion indigenous music, and conclusively offers examples of how the musical expressions from the continent can improove the music education practices of the region. As an ending, the article highlights the benefits of these musics that are lacking in current practices.

Keywords: indigenous music education, postmodern music education, decolonization in music education, music education practice, Latin American music education

Procedia PDF Downloads 43
1705 The Role of Metacognitive Strategy Intervention through Dialogic Interaction on Listeners’ Level of Cognitive Load

Authors: Ali Babajanzade, Hossein Bozorgian

Abstract:

Cognitive load plays an important role in learning in general and L2 listening comprehension in particular. This study is an attempt to investigate the effect of metacognitive strategy intervention through dialogic interaction (MSIDI) on L2 listeners’ cognitive load. A mixed-method design with 50 participants of male and female Iranian lower-intermediate learners between 20 to 25 years of age was used. An experimental group (n=25) received weekly interventions based on metacognitive strategy intervention through dialogic interaction for ten sessions. The second group, which was control (n=25), had the same listening samples with the regular procedure without a metacognitive intervention program in each session. The study used three different instruments: a) a modified version of the cognitive load questionnaire, b) digit span tests, and c) focused group interviews to investigate listeners’ level of cognitive load throughout the process. Results testified not only improvements in listening comprehension in MSIDI but a radical shift of cognitive load rate within this group. In other words, listeners experienced a lower level of cognitive load in MSIDI in comparison with their peers in the control group.

Keywords: cognitive load theory, human mental functioning, metacognitive theory, listening comprehension, sociocultural theory

Procedia PDF Downloads 151
1704 Action Research-Informed Multiliteracies-Enhanced Pedagogy in an Online English for Academic Purposes Course

Authors: Heejin Song

Abstract:

Employing a critical action research approach that rejects essentialist onto-epistemological orientations to research in English language teaching (ELT) and interrogates the hegemonic relations in the knowledge construction and reconstruction processes, this study illuminates how an action research-informed pedagogical practice can transform the English for academic purposes (EAP) teaching to be more culturally and linguistically inclusive and critically oriented for English language learners’ advancement in academic literacies skills. More specifically, this paper aims to showcase the action research-informed pedagogical innovations that emphasize multilingual learners’ multiliteracies engagement and experiential education-oriented learning to facilitate the development of learners’ academic literacies, intercultural communicative competence, and inclusive global citizenship in the context of Canadian university EAP classrooms. The pedagogical innovations through action research embarked in response to growing discussions surrounding pedagogical possibilities of plurilingualism in ELT and synchronous online teaching. The paper is based on two iterations of action research over the pandemic years between 2020 and 2022. The data includes student work samples, focus group interviews, anonymous surveys, teacher feedback and comments on student work and teaching reflections. The first iteration of the action research focused on the affordances of multimodal expressions in individual learners’ academic endeavors for their literacy skills development through individual online activities such as ‘my language autobiography,’ ‘multimodal expression corner’ and public speeches. While these activities help English language learners enhance their knowledge and skills of English-spoken discourses, these tasks did not necessarily require learners’ team-based collaborative endeavors to complete the assigned tasks. Identifying this area for improvement in the instructional design, the second action research cycle/iteration emphasized collaborative performativity through newly added performance/action-based innovative learning tasks, including ‘situational role-playing’, ‘my cooking show & interview’, and group debates in order to provide learners increased opportunities to communicate with peers who joined the class virtually from different parts of the world and enhance learners’ intercultural competence through various strategic and pragmatic communicative skills to collaboratively achieve their shared goals (i.e., successful completion of the given group tasks). The paper exemplifies instances wherein learners’ unique and diverse linguistic and cultural strengths were amplified, and critical literacies were further developed through learners’ performance-oriented multiliteracies engagement. The study suggests that the action research-informed teaching practice that advocates for collaborative multiliteracies engagement serves to facilitate learners’ activation of their existing linguistic and cultural knowledge and contributes to the development of learners’ academic literacy skills. Importantly, the study illuminates that such action research-informed pedagogical initiatives create an inclusive space for learners to build a strong sense of connectedness as global citizens with increased intercultural awareness in their community of language and cultural practices, and further allow learners to actively participate in the construction of ‘collaborative relations of power’ with their peers.

Keywords: action research, EAP, higher education, multiliteracies

Procedia PDF Downloads 82
1703 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 41
1702 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 449