Search results for: real estate prediction
6728 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1076727 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release
Authors: Jinfeng Zhang, Chun-Sing Lee
Abstract:
The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried
Procedia PDF Downloads 3996726 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 3856725 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 996724 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 3506723 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 176722 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 4416721 A Regression Model for Residual-State Creep Failure
Authors: Deepak Raj Bhat, Ryuichi Yatabe
Abstract:
In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils
Procedia PDF Downloads 4086720 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2126719 Service Life Prediction of Tunnel Structures Subjected to Water Seepage
Authors: Hassan Baji, Chun-Qing Li, Wei Yang
Abstract:
Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.Keywords: water seepage, tunnels, time-dependent reliability, service life
Procedia PDF Downloads 4826718 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence
Authors: Fitri CaturLestari
Abstract:
According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.Keywords: demography, economic growth, gender, HDI
Procedia PDF Downloads 3356717 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2096716 An Analysis of Transition in Building Form from Abolition of Diagonal Plane Control by Street Width: Focusing on Site Plan and Urban Block
Authors: Joohyun Park, Jin Baek
Abstract:
The purpose of this study is to Analyze the role and effect arise from Diagonal Plane Control by Street Width (DPCSW) in Architecture in Seoul, and to predict the aspect of transition about the relationship among buildings and Urban morphology After the abolition. To find the tendency of building shape regulation, This study review Building Acts concerned with form making (the building to land Ratio, building designated line, wall designated line, building height limit (DPCSW) and etc.) and simulate the shape of urban blocks made by Acts in drawings. The review results show DPCSW is not only limitation about height, but also making the building setback from road and make the Road broader. And it makes the typical shape of the urban block that buildings are moving away from surrounding road After the Abolition of DPCSW; it is expected by the legislature that domestic real estate’s market would be promoted by increased total floor areas in each building. Some substitution from the legislature is announced, but it just deals with Building Maximum unit by Block unit except the regulation about arrangement in urban Figure and Ground. In conclusion, refrain from the uncontrolled development of city, It is important to make regulation about not only height factors but limitation line in land. Furthermore, through revising District Unit Plan, It is positively necessary to reset the relationship between buildings for the making the city space better.Keywords: diagonal plane control by street width, building maximum height, district unit plan, building acts, urban block type, morphology, building shape
Procedia PDF Downloads 3126715 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4086714 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1486713 Intermediate-Term Impact of Taiwan High-Speed Rail (HSR) and Land Use on Spatial Patterns of HSR Travel
Authors: Tsai Yu-hsin, Chung Yi-Hsin
Abstract:
The employment of an HSR system, resulting in elevation in the inter-city/-region accessibility, is likely to promote spatial interaction between places in the HSR and extended territory. The inter-city/-region travel via HSR could be, among others, affected by the land use, transportation, and location of the HSR station at both trip origin and destination ends. However, relatively few insights have been shed on these impacts and spatial patterns of the HSR travel. The research purposes, as phase one of a series of HSR related research, of this study are threefold: to analyze the general spatial patterns of HSR trips, such as the spatial distribution of trip origins and destinations; to analyze if specific land use, transportation characteristics, and trip characteristics affect HSR trips in terms of the use of HSR, the distribution of trip origins and destinations, and; to analyze the socio-economic characteristics of HSR travelers. With the Taiwan HSR starting operation in 2007, this study emphasizes on the intermediate-term impact of HSR, which is made possible with the population and housing census and industry and commercial census data and a station area intercept survey conducted in the summer 2014. The analysis will be conducted at the city, inter-city, and inter-region spatial levels, as necessary and required. The analysis tools include descriptive statistics and multivariate analysis with the assistance of SPSS, HLM and ArcGIS. The findings, on the one hand, can provide policy implications for associated land use, transportation plan and the site selection of HSR station. On the other hand, on the travel the findings are expected to provide insights that can help explain how land use and real estate values could be affected by HSR in following phases of this series of research.Keywords: high speed rail, land use, travel, spatial pattern
Procedia PDF Downloads 4626712 Enhancing Communicative Skills for Students in Automatics
Authors: Adrian Florin Busu
Abstract:
The communicative approach, or communicative language teaching, used for enhancing communicative skills in students in automatics is a modern teaching approach based on the concept of learning a language through having to communicate real meaning. In the communicative approach, real communication is both the objective of learning and the means through which it takes place. This approach was initiated during the 1970’s and quickly became prominent, as it proposed an alternative to the previous systems-oriented approaches. In other words, instead of focusing on the acquisition of grammar and vocabulary, the communicative approach aims at developing students’ competence to communicate in the target language with an enhanced focus on real-life situations. To put it in an nutshell, CLT considers using the language to be just as important as actually learning the language.Keywords: communication, approach, objective, learning
Procedia PDF Downloads 1606711 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1416710 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4596709 Green Housing Projects in Egypt: A Futuristic Approach
Authors: Shimaa Mahmoud Ali Ahmed, Boshra Tawfek El-Shreef
Abstract:
Sustainable development has become an important concern worldwide, and climate change has become a global threat. Some of these affect how we approach environmental issues — and how we should approach them. Environmental aspects have an important impact on the built environment, that’s why knowledge about Green Building and Green Construction become a vital dimension of urban sustainable development to face the challenges of climate change. There are several levels of green buildings, from energy-efficient lighting to 100% eco-friendly construction; the concept of green buildings in Egypt is still a rare occurrence, with the concept being relatively new to the market. There are several projects on the ground that currently employing sustainable and green solutions to some extent, some of them achieve a limit of success and others fail to employ the new solutions. The market and the cost as well, are great factors. From the last century, green architecture and environmental sustainability become a famous trend that all the researchers like to follow. Nowadays, the trend towards green has shifted to housing and real estate projects. While the environmental aspects are the key to achieve green buildings, the economic benefits, and the market forces are considered as big challenges. The paper assumes that some appropriate environmental treatments could be added to the applied prototype of the governmental social housing projects in Egypt to achieve better environmental solutions. The aim of the research is to get housing projects in Egypt closer to the track of sustainable and green buildings, through making a local future proposal to be integrated into the current policies. The proposed model is based upon adding some appropriate, cheap environmental modifications to the prototype of the Ministry of Housing, Infrastructure, and New Urban Communities. The research is based on an analytical, comparative analytical, and inductive approach to study and analyze the housing projects in Egypt and the possibilities of integrating green techniques into it.Keywords: green buildings, urban sustainability, housing projects, sustainable development goals, Egypt 2030
Procedia PDF Downloads 1376708 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 4026707 Rental Housing May Address Affordable Housing Deficiency in India
Authors: Meha Singla, Shankhadeep Chaudhuri, Yadunandan Batchu
Abstract:
Rental Housing is a more cost effective and flexible housing solution for the low income families than home-ownership. While India is undergoing a new industrial metamorphosis with multiple government initiatives that emphasise on the growth of manufacturing sector through policy frameworks and corridor development proposals, there is going to be a huge influx of low-income working population to the upcoming urban centres. As per stats, about 70 per cent of the housing demand at these centres fall into the affordable segment. And in the midst of this rapid urbanisation and huge immigration of young population, there is a lack of proper rental housing framework in the country. A large number of immigrants will be unable to support home-ownership thereby leading to proliferation of slums in urban centres. As a result, there is a dire need for immediate articulation of a comprehensive rental housing policy and affordable housing initiatives. In this paper, CommonFloor attempts to analyse successful rental housing case studies of the world followed by establishing a correlation between the gap in urban rental housing stock and the per capita income statistics to devise rental housing affordability specific to major Indian cities (Delhi, Mumbai, Bangalore, Chennai). Further, with the corroboration of market price trends, it will try to locate feasible micro-markets for immediate rental housing action. Final research findings will provide key data points thereby helping to design the approach for efficient utilisation of unsold residential inventory in the country in order to compensate the rental housing deficiency. This data set is believed to express viable model(s) of the rental housing approach for the government and private participants.Keywords: housing prices, migration of population, real estate, rental housing, rental markets, residential property market, urbanisation
Procedia PDF Downloads 3066706 Importance of Mathematical Modeling in Teaching Mathematics
Authors: Selahattin Gultekin
Abstract:
Today, in engineering departments, mathematics courses such as calculus, linear algebra and differential equations are generally taught by mathematicians. Therefore, during mathematicians’ classroom teaching there are few or no applications of the concepts to real world problems at all. Most of the times, students do not know whether the concepts or rules taught in these courses will be used extensively in their majors or not. This situation holds true of for all engineering and science disciplines. The general trend toward these mathematic courses is not good. The real-life application of mathematics will be appreciated by students when mathematical modeling of real-world problems are tackled. So, students do not like abstract mathematics, rather they prefer a solid application of the concepts to our daily life problems. The author highly recommends that mathematical modeling is to be taught starting in high schools all over the world In this paper, some mathematical concepts such as limit, derivative, integral, Taylor Series, differential equations and mean-value-theorem are chosen and their applications with graphical representations to real problems are emphasized.Keywords: applied mathematics, engineering mathematics, mathematical concepts, mathematical modeling
Procedia PDF Downloads 3196705 Behind Fuzzy Regression Approach: An Exploration Study
Authors: Lavinia B. Dulla
Abstract:
The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval
Procedia PDF Downloads 2986704 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 2406703 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 2686702 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 1826701 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 4436700 Autonomous Quantum Competitive Learning
Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally
Abstract:
Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.Keywords: competitive learning, quantum gates, quantum gates, winner-take-all
Procedia PDF Downloads 4726699 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware
Authors: Ionel Zagan, Vasile Gheorghita Gaitan
Abstract:
Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system
Procedia PDF Downloads 368