Search results for: motor for washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3913

Search results for: motor for washing machine

3373 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
3372 Transforming Automotive Performance: The Role of Additive Manufacturing

Authors: Joaquin Ticzon, Christian Demition, Jaime Honra

Abstract:

Additive manufacturing (AM) or 3D printing has been one of the emerging trends present in various industries, particularly in prototyping. This review focuses on the impact of additive manufacturing on a motor vehicle's performance aiming to investigate potential advancements to further revolutionize the way parts are manufactured. One of the most common problems faced in the automotive industry is carbon footprint emissions from motor vehicles, which was stated to be remedied by lightweight; additively manufactured parts helped reduce these emissions due to weight reduction provided by additively manufactured parts. Composed of various techniques for AM as well as materials utilized during the manufacturing process, which differ in terms of the quality and performance it provides during its application on the final product. Given this, the generative design will not be discussed in such a detailed manner because the focus will revolve around the effects on the performance of a vehicle due to additively manufactured parts.

Keywords: additive manufacturing (AM), automotive, computer aided design (CAD), generative design

Procedia PDF Downloads 35
3371 Feasibility on Introducing an Alternative Solar Powered Propelling Mechanism for Multiday Fishing Boats in Sri Lanka

Authors: Oshada Gamage, Chamal Wimalasooriya, Chrismal Boteju, W. K. Wimalsiri

Abstract:

This paper presents a study on the feasibility of introducing a solar powered propelling mechanism to multi-day fishing boats as an alternative energy source. Since solar energy is readily available on the sea throughout the year, this free energy could be utilized to power multi-day fishing vessels. Multi-day boats have a large deck area where solar panels can be mounted above without much effort. This project involves studying the amount of power that can be generated using onboard solar panels and implementing an independent propelling system to run the boat. A chain drive system was designed to propel the boat, when the batteries are fully charged, from an electric motor using the same propeller. A 60 feet multi-day fishing boat built by a local boat manufacturer was chosen for the study. The service speed of the boat was around 6 knots with the electric motor, and the duration of cruising is 1 hour per day with around 11 hours of charging. 350-watt Mono-crystalline PV module, 75 kW HVH type motor, and 10 kWh lithium-ion battery packs were chosen for the study. From the calculations, it was obtained that the boat has 30 PV modules (10.5 kW), 5 batteries (47 kWh), The boat dimensions are 20 meter length of water line, 5.51 meter of beam, 1.8 meter of draught, and 77 ton of total displacement with the PV system net present value of USD 12445 for 20 years of operation and a payback period of around 8.2 years.

Keywords: multiday fishing boats, photovoltaic cells, solar energy, solar powered boat

Procedia PDF Downloads 147
3370 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 14
3369 H-Infinity Controller Design for the Switched Reluctance Machine

Authors: Siwar Fadhel, Imen Bahri, Man Zhang

Abstract:

The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords: current regulation, experimentation, robust H-infinity control, switched reluctance machine

Procedia PDF Downloads 310
3368 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 211
3367 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
3366 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns

Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez

Abstract:

In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.

Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics

Procedia PDF Downloads 412
3365 Hybrid Control Strategy for Nine-Level Asymmetrical Cascaded H-Bridge Inverter

Authors: Bachir Belmadani, Rachid Taleb, M’hamed Helaimi

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the hybrid pulse-width modulation (HPWM) strategy of a uniform step asymmetrical cascaded H-bridge nine-level Inverter (USACHB9LI). The HPWM approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HPWM controller in feeding a high power induction motor.

Keywords: uniform step asymmetrical cascaded h-bridge high-level inverter, hybrid pwm, sinusoidal pwm, high power induction motor

Procedia PDF Downloads 571
3364 Clinical Comparative Study Comparing Efficacy of Intrathecal Fentanyl and Magnesium as an Adjuvant to Hyperbaric Bupivacaine in Mild Pre-Eclamptic Patients Undergoing Caesarean Section

Authors: Sanchita B. Sarma, M. P. Nath

Abstract:

Adequate analgesia following caesarean section decreases morbidity, hastens ambulation, improves patient outcome and facilitates care of the newborn. Intrathecal magnesium, an NMDA antagonist, has been shown to prolong analgesia without significant side effects in healthy parturients. The aim of this study was to evaluate the onset and duration of sensory and motor block, hemodynamic effect, postoperative analgesia, and adverse effects of magnesium or fentanyl given intrathecally with hyperbaric 0.5% bupivacaine in patients with mild preeclampsia undergoing caesarean section. Sixty women with mild preeclampsia undergoing elective caesarean section were included in a prospective, double blind, controlled trial. Patients were randomly assigned to receive spinal anesthesia with 2 mL 0.5% hyperbaric bupivacaine with 12.5 µg fentanyl (group F) or 0.1 ml of 50% magnesium sulphate (50 mg) (group M) with 0.15ml preservative free distilled water. Onset, duration and recovery of sensory and motor block, time to maximum sensory block, duration of spinal anaesthesia and postoperative analgesic requirements were studied. Statistical comparison was carried out using the Chi-square or Fisher’s exact tests and Independent Student’s t-test where appropriate. The onset of both sensory and motor block was slower in the magnesium group. The duration of spinal anaesthesia (246 vs. 284) and motor block (186.3 vs. 210) were significantly longer in the magnesium group. Total analgesic top up requirement was less in group M. Hemodynamic parameters were similar in both the groups. Intrathecal magnesium caused minimal side effects. Since Fentanyl and other opioid congeners are not available throughout the country easily, magnesium with its easy availability and less side effect profile can be a cost effective alternative to fentanyl in managing pregnancy induced hypertension (PIH) patients given along with Bupivacaine intrathecally in caesarean section.

Keywords: analgesia, magnesium, pre eclampsia, spinal anaesthesia

Procedia PDF Downloads 321
3363 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, Rachid Elbachtiri

Abstract:

The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.

Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter

Procedia PDF Downloads 400
3362 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 265
3361 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 147
3360 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
3359 Measurement Technologies for Advanced Characterization of Magnetic Materials Used in Electric Drives and Automotive Applications

Authors: Lukasz Mierczak, Patrick Denke, Piotr Klimczyk, Stefan Siebert

Abstract:

Due to the high complexity of the magnetization in electrical machines and influence of the manufacturing processes on the magnetic properties of their components, the assessment and prediction of hysteresis and eddy current losses has remained a challenge. In the design process of electric motors and generators, the power losses of stators and rotors are calculated based on the material supplier’s data from standard magnetic measurements. This type of data does not include the additional loss from non-sinusoidal multi-harmonic motor excitation nor the detrimental effects of residual stress remaining in the motor laminations after manufacturing processes, such as punching, housing shrink fitting and winding. Moreover, in production, considerable attention is given to the measurements of mechanical dimensions of stator and rotor cores, whereas verification of their magnetic properties is typically neglected, which can lead to inconsistent efficiency of assembled motors. Therefore, to enable a comprehensive characterization of motor materials and components, Brockhaus Measurements developed a range of in-line and offline measurement technologies for testing their magnetic properties under actual motor operating conditions. Multiple sets of experimental data were obtained to evaluate the influence of various factors, such as elevated temperature, applied and residual stress, and arbitrary magnetization on the magnetic properties of different grades of non-oriented steel. Measured power loss for tested samples and stator cores varied significantly, by more than 100%, comparing to standard measurement conditions. Quantitative effects of each of the applied measurement were analyzed. This research and applied Brockhaus measurement methodologies emphasized the requirement for advanced characterization of magnetic materials used in electric drives and automotive applications.

Keywords: magnetic materials, measurement technologies, permanent magnets, stator and rotor cores

Procedia PDF Downloads 140
3358 Teachers' Experience for Improving Fine Motor Skills of Children with Down Syndrome in the Context of Special Education in Southern Province of Sri Lanka

Authors: Sajee A. Gamage, Champa J. Wijesinghe, Patricia Burtner, Ananda R. Wickremasinghe

Abstract:

Background: Teachers working in the context of special education have an enormous responsibility of enhancing performance skills of children in their classroom settings. Fine Motor Skills (FMS) are essential functional skills for children to gain independence in Activities of Daily Living. Children with Down Syndrome (DS) are predisposed to specific challenges due to deficits in FMS. This study is aimed to determine the teachers’ experience on improving FMS of children with DS in the context of special education of Southern Province, Sri Lanka. Methodology: A cross-sectional study was conducted among all consenting eligible teachers (n=147) working in the context of special education in government schools of Southern Province of Sri Lanka. A self-administered questionnaire was developed based on literature and expert opinion to assess teachers’ experience regarding deficits of FMS, limitations of classroom activity performance and barriers to improve FMS of children with DS. Results: Approximately 93% of the teachers were females with a mean age ( ± SD) of 43.1 ( ± 10.1) years. Thirty percent of the teachers had training in special educationand 83% had children with DS in their classrooms. Major deficits of FMS reported were deficits in grasping (n=116; 79%), in-hand manipulation (n=103; 70%) and bilateral hand use (n=99; 67.3%). Paperwork (n=70; 47.6%), painting (n=58; 39.5%), scissor work (n=50; 34.0%), pencil use for writing (n=45; 30.6%) and use of tools in the classroom (n=41; 27.9%) were identified as major classroom performance limitations of children with DS. Parental factors (n=67; 45.6%), disease specific characteristics (n=58; 39.5%) and classroom factors (n=36; 24.5%), were identified as major barriers to improve FMS in the classroom setting. Lack of resources and standard tools, social stigma and late school admission were also identified as barriers to FMS training. Eighty nine percent of the teachers informed that training fine motor activities in a special education classroom was more successful than work with normal classroom setting. Conclusion: Major areas of FMS deficits were grasping, in-hand manipulation and bilateral hand use; classroom performance limitations included paperwork, painting and scissor work of children with DS. Teachers recommended regular practice of fine motor activities according to individual need. Further research is required to design a culturally specific FMS assessment tool and intervention methods to improve FMS of children with DS in Sri Lanka.

Keywords: classroom activities, Down syndrome, experience, fine motor skills, special education, teachers

Procedia PDF Downloads 153
3357 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 225
3356 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 431
3355 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
3354 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
3353 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 57
3352 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant

Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.

Abstract:

The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.

Keywords: availability, displacement, vibration, rio-vibro, condition monitoring

Procedia PDF Downloads 91
3351 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 276
3350 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109
3349 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
3348 Mechanical Tension Control of Winding Systems for Paper Webs

Authors: Glaoui Hachemi

Abstract:

In this paper, a scheme based on multi-input multi output Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding system is proposed. Once the uncoupled model of the winding system was obtained, a smooth control function with a threshold was selected to indicate how far away the case was from the sliding surface. nevertheless, this control function depends closely on the higher bound of the uncertainties, which generates overlap. So, this size has to be chosen with broad care to obtain high performances. Usually, the upper bound of uncertainties is difficult to know before motor operation, so, a Fuzzy Sliding Mode controller is investigated to resolve this problem, a simple Fuzzy inference mechanism is used to decrease the chattering phenomenon by simple adjustments. A simulation study is achieved and that the indicate fuzzy sliding mode controllers have great potential for use as an alternative to the conventional sliding mode control.

Keywords: Winding system, induction machine, Mechanical tension, Proportional-integral (PI), sliding mode control, Fuzzy logic

Procedia PDF Downloads 96
3347 Optimization of Quercus cerris Bark Liquefaction

Authors: Luísa P. Cruz-Lopes, Hugo Costa e Silva, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of Quercus cerris (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of Quercus cerris, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of Quercus cerris is mostly composed by suberin (ca. 30%) and lignin (ca. 24%) as well as insolvent hemicelluloses in hot water (ca. 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction.

Keywords: liquefaction, Quercus cerris, polyalcohol liquefaction, temperature

Procedia PDF Downloads 332
3346 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
3345 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
3344 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission

Procedia PDF Downloads 289