Search results for: military decision making process (MDMP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20747

Search results for: military decision making process (MDMP)

20207 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 105
20206 Willingness to Pay for the Preservation of Geothermal Areas in Iceland: The Contingent Valuation Studies of Eldvörp and Hverahlíð

Authors: David Cook, Brynhildur Davidsdottir, Dadi. M. Kristofersson

Abstract:

The approval of development projects with significant environmental impacts implies that the economic costs of the affected environmental resources must be less than the financial benefits, but such irreversible decisions are frequently made without ever attempting to estimate the monetary value of the losses. Due to this knowledge gap in the processes informing decision-making, development projects are commonly approved despite the potential for social welfare to be undermined. Heeding a repeated call by the OECD to commence economic accounting of environmental impacts as part of the cost-benefit analysis process for Icelandic energy projects, this paper sets out the results pertaining to the nation’s first two contingent valuation studies of geothermal areas likely to be developed in the near future. Interval regression using log-transformation was applied to estimate willingness to pay (WTP) for the preservation of the high-temperature Eldvörp and Hverahlíð fields. The estimated mean WTP was 8,333 and 7,122 ISK for Eldvörp and Hverahlíð respectively. Scaled up to the Icelandic population of national taxpayers, this equates to estimated total economic value of 2.10 and 1.77 billion ISK respectively. These results reinforce arguments in favour of accounting for the environmental impacts of Iceland’s future geothermal power projects as a mandatory component of the exploratory and production license application process. Further research is necessary to understand the economic impacts to specific ecosystem services associated with geothermal environments, particularly connected to changes in recreational amenity. In so doing, it would be possible to gain greater comprehension of the various components of total economic value, evolving understanding of why one geothermal area – in this case, Eldvörp – has a higher preservation value than another.

Keywords: decision-making, contingent valuation, geothermal energy, preservation

Procedia PDF Downloads 214
20205 Collective Intelligence-Based Early Warning Management for Agriculture

Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin

Abstract:

The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.

Keywords: agricultural engineering, warning systems, social network services, context awareness

Procedia PDF Downloads 383
20204 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example

Authors: K. Marciniak, M. Owoc

Abstract:

Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.

Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems

Procedia PDF Downloads 513
20203 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
20202 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods

Authors: Murat Arıbaş, Uğur Özcan

Abstract:

Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.

Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.

Procedia PDF Downloads 591
20201 From Achilles to Chris Kyle-Militarized Masculinity and Hollywood in the Post-9/11 Era

Authors: Mary M. Park

Abstract:

Hollywood has had a long and enduring history of showcasing the United States military to civilian audiences, and the portrayals of soldiers in films have had a definite impact on the civilian perception of the US military. The growing gap between the civilian population and the military in the US has led to certain stereotypes of military personnel to proliferate, especially in the area of militarized masculinity, which has often been harmful to the psychological and spiritual wellbeing of military personnel. Examining Hollywood's portrayal of soldiers can serve to enhance our understanding of how civilians may be influenced in their perception of military personnel. Moreover, it can provide clues as to how male military personnel may also be influenced by Hollywood films as they form their own military identity. The post 9/11 era has seen numerous high budget films lionizing a particular type of soldier, the 'warrior-hero', who adheres to a traditional form of hegemonic masculinity and exhibits traits such as physical strength, bravery, stoicism, and an eagerness to fight. This paper examines how the portrayal of the 'warrior-hero' perpetuates a negative stereotype that soldiers are a blend of superheroes and emotionless robots and, therefore, inherently different from civilians. This paper examines the portrayal of militarized masculinity in three of the most successful war films of the post-9/11 era; Black Hawk Down (2001), The Hurt Locker (2008), and American Sniper (2014). The characters and experiences of the soldiers depicted in these films are contrasted with the lived experiences of soldiers during the Iraq and Afghanistan wars. Further, there is an analysis of popular films depicting ancient warriors, such as Troy (2004) and 300 (2007), which were released during the early years of the War on Terror. This paper draws on the concept of hegemonic militarised masculinity by leading scholars and feminist international relations theories on militarized masculinity. This paper uses veteran testimonies collected from a range of public sources, as well as previous studies on the link between traditional masculinity and war-related mental illness. This paper concludes that the seemingly exclusive portrayal of soldiers as 'warrior-heroes' in films in the post-9/11 era is misleading and damaging to civil-military relations and that the reality of the majority of soldiers' experiences is neglected in Hollywood films. As civilians often believe they are being shown true depictions of the US military in Hollywood films, especially in films that portray real events, it is important to find the differences between the idealized fictional 'warrior-heroes' and the reality of the soldiers on the ground in the War on Terror.

Keywords: civil-military relations, gender studies, militarized masculinity, social pyschology

Procedia PDF Downloads 126
20200 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 642
20199 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 439
20198 Stability of Ochratoxin a During Bread Making Process

Authors: Sara Heidari, Jafar Mohammadzadeh Milani, Elmira Pouladi Borj

Abstract:

In this research, stability of Ochratoxin A (OTA) during bread making process including fermentation with yeasts (Saccharomyces cerevisiae) and Sourdough (Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Lactobacillus fermentum) and baking at 200°C were examined. Bread was prepared on a pilot-plant scale by using wheat flour spiked with standard solution of OTA. During this process, mycotoxin levels were determined after fermentation of the dough with sourdough and three types of yeast including active dry yeast, instant dry yeast and compressed yeast after further baking 200°C by high performance liquid chromatography (HPLC) with fluorescence detector after extraction and clean-up on an immunoaffinity column. According to the results, the highest stability of was observed in the first fermentation (first proof), while the lowest stability was observed in the baking stage in comparison to contaminated flour. In addition, compressed yeast showed the maximum impact on stability of OTA during bread making process.

Keywords: Ochratoxin A, bread, dough, yeast, sourdough

Procedia PDF Downloads 579
20197 Price Control: A Comprehensive Step to Control Corruption in the Society

Authors: Muhammad Zia Ullah Baig, Atiq Uz Zama

Abstract:

The motivation of the project is to facilitate the governance body, as well as the common man in his/her daily life consuming product rates, to easily monitor the expense, to control the budget with the help of single SMS (message), e-mail facility, and to manage governance body by task management system. The system will also be capable of finding irregularities being done by the concerned department in mitigating the complaints generated by the customer and also provide a solution to overcome problems. We are building a system that easily controls the price control system of any country, we will feeling proud to give this system free of cost to Indian Government also. The system is able to easily manage and control the price control department of government all over the country. Price control department run in different cities under City District Government, so the system easily run in different cities with different SMS Code and decentralize Database ensure the non-functional requirement of system (scalability, reliability, availability, security, safety). The customer request for the government official price list with respect to his/her city SMS code (price list of all city available on website or application), the server will forward the price list through a SMS, if the product is not available according to the price list the customer generate a complaint through an SMS or using website/smartphone application, complaint is registered in complaint database and forward to inspection department when the complaint is entertained, the inspection department will forward a message about the complaint to customer. Inspection department physically checks the seller who does not follow the price list, but the major issue of the system is corruption, may be inspection officer will take a bribe and resolve the complaint (complaint is fake) in that case the customer will not use the system. The major issue of the system is to distinguish the fake and real complain and fight for corruption in the department. To counter the corruption, our strategy is to rank the complain if the same type of complaint is generated the complaint is in high rank and the higher authority will also notify about that complain, now the higher authority of department have reviewed the complaint and its history, the officer who resolve that complaint in past and the action against the complaint, these data will help in decision-making process, if the complaint was resolved because the officer takes bribe, the higher authority will take action against that officer. When the price of any good is decided the market/former representative is also there, with the mutual understanding of both party the price is decided, the system facilitate the decision-making process. The system shows the price history of any goods, inflation rate, available supply, demand, and the gap between supply and demand, these data will help to allot for the decision-making process.

Keywords: price control, goods, government, inspection, department, customer, employees

Procedia PDF Downloads 412
20196 Designing a Model to Increase the Flow of Circular Economy Startups Using a Systemic and Multi-Generational Approach

Authors: Luís Marques, João Rocha, Andreia Fernandes, Maria Moura, Cláudia Caseiro, Filipa Figueiredo, João Nunes

Abstract:

The implementation of circularity strategies other than recycling, such as reducing the amount of raw material, as well as reusing or sharing existing products, remains marginal. The European Commission announced that the transition towards a more circular economy could lead to the net creation of about 700,000 jobs in Europe by 2030, through additional labour demand from recycling plants, repair services and other circular activities. Efforts to create new circular business models in accordance with completely circular processes, as opposed to linear ones, have increased considerably in recent years. In order to create a societal Circular Economy transition model, it is necessary to include innovative solutions, where startups play a key role. Early-stage startups based on new business models according to circular processes often face difficulties in creating enough impact. The StartUp Zero Program designs a model and approach to increase the flow of startups in the Circular Economy field, focusing on a systemic decision analysis and multi-generational approach, considering Multi-Criteria Decision Analysis to support a decision-making tool, which is also supported by the use of a combination of an Analytical Hierarchy Process and Multi-Attribute Value Theory methods. We define principles, criteria and indicators for evaluating startup prerogatives, quantifying the evaluation process in a unique result. Additionally, this entrepreneurship program spanning 16 months involved more than 2400 young people, from ages 14 to 23, in more than 200 interaction activities.

Keywords: circular economy, entrepreneurship, startups;, multi-criteria decision analysis

Procedia PDF Downloads 108
20195 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making

Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab

Abstract:

Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.

Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning

Procedia PDF Downloads 354
20194 Cross-Sectional Study of Critical Parameters on RSET and Decision-Making of At-Risk Groups in Fire Evacuation

Authors: Naser Kazemi Eilaki, Ilona Heldal, Carolyn Ahmer, Bjarne Christian Hagen

Abstract:

Elderly people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to a safe place. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. While earlier studies have frequently addressed quantitative measurements regarding at-risk groups' physical characteristics (e.g., their speed of travel), this paper considers the influence of at-risk groups’ characteristics on their decision and determining better escape routes. Most of evacuation models are based on mapping people's movement and their behaviour to summation times for common activity types on a timeline. Usually, timeline models estimate required safe egress time (RSET) as a sum of four timespans: detection, alarm, premovement, and movement time, and compare this with the available safe egress time (ASET) to determine what is influencing the margin of safety.This paper presents a cross-sectional study for identifying the most critical items on RSET and people's decision-making and with possibilities to include safety knowledge regarding people with physical or cognitive functional impairments. The result will contribute to increased knowledge on considering at-risk groups and disabilities for designing and developing safe escape routes. The expected results can be an asset to predict the probabilistic behavioural pattern of at-risk groups and necessary components for defining a framework for understanding how stakeholders can consider various disabilities when determining the margin of safety for a safe escape route.

Keywords: fire safety, evacuation, decision-making, at-risk groups

Procedia PDF Downloads 106
20193 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
20192 The Military and Motherhood: Identity and Role Expectation within Two Greedy Institutions

Authors: Maureen Montalban

Abstract:

The military is a predominantly male-dominated organisation that has entrenched hierarchical and patriarchal norms. Since 1975, women have been allowed to continue active service in the Australian Defence Force during pregnancy and after the birth of a child; prior to this time, pregnancy was grounds for automatic termination. The military and family, as institutions, make great demands on individuals with respect to their commitment, loyalty, time and energy. This research explores what it means to serve in the Australian Army as a woman through a gender lens, overlaid during a specific time period of their service; that is, during pregnancy, birth, and being a mother. It investigates the external demands faced by servicewomen who are mothers, whether it be from society, the Army, their teammates, their partners, or their children; and how they internally make sense of that with respect to their own identity and role as a mother, servicewoman, partner and as an individual. It also seeks to uncover how Australian Army servicewomen who are also mothers attempt to manage the dilemma of serving two greedy institutions when both expect and demand so much and whether this is, in fact, an impossible dilemma.

Keywords: women's health, gender studies, military culture, identity

Procedia PDF Downloads 104
20191 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique

Authors: Konstantinos Tolidis

Abstract:

The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.

Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods

Procedia PDF Downloads 347
20190 The Importance of Effectively Communicating Science and Economics to the Public (Layman)

Authors: Puran Prasad Adhikari

Abstract:

Considering the fact that when we are able to communicate science and economics effectively to broader nonprofessional audiences, it promotes a great understanding of its wider relevance to society and encourages more informed and confident decision-making at all levels, from the government to communities to individuals. The study has been conducted. This study is aimed to examine the understanding of the general public of economics and the basic sciences functioning in our surroundings in our day-to-day life. Data was gathered through historical documents related to science communication and through interviews with the public. The statistical result shows that there is a great lack of knowledge in the general public about the basic sciences and how economics impacts their life daily. The difficulties faced by the public include the view that these things can only be understood by professionals and it is beyond their capacity to grasp these concepts, the use of technical words and jargon by the professionals, and the lack of the medium to understand even if they want to learn it. The result further indicates that the lack of this basic knowledge also leads to bad decision-making, which causes frustration and anxiety. The result shows the great correlation between the confidence level of a person and the knowledge of basic science and economics. The factor behind this was the right decision-making capacity of the individual, which boosts the happy hormones of the individual. So indirectly, we found the correlation between mental health and the understanding of science and economics. The public wants to have a basic understanding and concepts of these topics, but they complain that there is no effective medium through which they can gain the understanding; the medium which is available is full of jargon and technical terms directed to professional and highly educated which they consider is beyond their reach. So, communicating the basic concepts to the general public is of great importance in the 21st century for the overall progress of society. The professional one can make this possible by considering the level of public understanding and making the communication and the programs comprehensible to the layman. Various means can be used to make this successful and effective, e.g., cartoon guide books, Q&A with the layman, animations use, and daily life examples. This study’s implication will help educators of high-level institutions and policymakers improve general public [layman] access to comprehensible knowledge.

Keywords: layman, comprehensible, decision making, frustration, confidence

Procedia PDF Downloads 75
20189 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
20188 Examining the Level of Career Maturity on Cultural Aspect among Undergraduate Foreign Students in A Public University in Malaysia

Authors: Mustafa Tekke, Nurullah Kurt

Abstract:

This study examined the level of career maturity of undergraduate foreign students in a public university in Malaysia by examining on cultural aspect by using the Career Maturity Inventory. Two hundred and twenty nine (Male = 106, Female = 123) foreign students studying in various majors completed the Career Maturity Inventory and the scores of the foreign students on the CMI suggested that they had slightly higher levels than the mean level of maturity in career. Result was also supported by testing the feeling about major, consideration of changing major and planning after graduation, which indicated that foreign students had their own career decision making. However, this result should be viewed with caution within ethnic difference.

Keywords: career maturity, foreign students, career decision making, feeling about major, knowledge about major

Procedia PDF Downloads 309
20187 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System

Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek

Abstract:

This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.

Keywords: data warehouse, GIS, MCDM, SOLAP

Procedia PDF Downloads 178
20186 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 115
20185 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 83
20184 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 326
20183 Calling the Shots: How Others’ Mistakes May Influence Vaccine Take-up

Authors: Elizabeth Perry, Jylana Sheats

Abstract:

Scholars posit that there is an overlap between the fields of Behavioral Economics (BE) and Behavior Science (BSci)—and that consideration of concepts from both may facilitate a greater understanding of health decision-making processes. For example, the ‘intention-action gap’ is one BE concept to explain sup-optimal decision-making. It is described as having knowledge that does not translate into behavior. Complementary best BSci practices may provide insights into behavioral determinants and relevant behavior change techniques (BCT). Within the context of BSci, this exploratory study aimed to apply a BE concept with demonstrated effectiveness in financial decision-making to a health behavior: influenza (flu) vaccine uptake. Adults aged >18 years were recruited on Amazon’s Mechanical Turk, a digital labor market where anonymous users perform simple tasks at low cost. Eligible participants were randomized into 2 groups, reviewed a scenario, and then completed a survey on the likelihood of receiving a flu shot. The ‘usual care’ group’s scenario included standard CDC guidance that supported the behavior. The ‘intervention’ group’s scenario included messaging about people who did not receive the flu shot. The framing was such that participants could learn from others’ (strangers) mistakes and the subsequent health consequences: ‘Last year, other people who didn’t get the vaccine were about twice as likely to get the flu, and a number of them were hospitalized or even died. Don’t risk it.’ Descriptive statistics and chi-square analyses were performed on the sample. There were 648 participants (usual care, n=326; int., n=322). Among racial/ethnic minorities (n=169; 57% aged < 40), the intervention group was 22% more likely to report that they were ‘extremely’ or ‘moderately’ likely to get the flu vaccine (p = 0.11). While not statistically significant, findings suggest that framing messages from the perspective of learning from the mistakes of unknown others coupled with the BCT ‘knowledge about the health consequences’ may help influence flu vaccine uptake among the study population. With the widely documented disparities in vaccine uptake, exploration of the complementary application of these concepts and strategies may be critical.

Keywords: public health, decision-making, vaccination, behavioral science

Procedia PDF Downloads 45
20182 Independent Audit in Brazilian Companies Listed on B3: An Analysis of Companies That Received Qualified Opinion and Disclaimer of Opinion

Authors: Diego Saldo Alves, Marcelo Paveck Ayub

Abstract:

The quality of accounting information is very important for the decision-making of managers, investors government and other information users. The opinion of the independent audit has a significant influence on the decision-making, especially the investors. Therefore, the aim of this study is to analyze the reasons that companies listed on Brazilian Stock Exchange B3, if they received qualified opinion and disclaimer of opinion of the independent auditors. We analyzed the reports of the independent auditors of 23 Brazilian companies listed in B3 that received qualified opinion and disclaimer of opinion between the years 2012 and 2017. The findings show that the companies do not comply the International Financial Reporting Standard, IFRS, also they did not provide documentation to prove the operations performed, did not account expenses, problems in corporate governance and internal controls.

Keywords: audit, disclaimer of opinion, independent auditors, qualified opinion

Procedia PDF Downloads 194
20181 Computer-Aided Diagnosis of Eyelid Skin Tumors Using Machine Learning

Authors: Ofira Zloto, Ofir Fogel, Eyal Klang

Abstract:

Purpose: The aim is to develop an automated framework based on machine learning to diagnose malignant eyelid skin tumors. Methods: This study utilized eyelid lesion images from Sheba Medical Center, a large tertiary center in Israel. Before model training, we pre-trained our models on the ISIC 2019 dataset consisting of 25,332 images. The proprietary eyelid dataset was then used for fine-tuning. The dataset contained multiple images per patient, aiming to classify malignant lesions in comparison to benign counterparts. Results: The analyzed dataset consisted of images representing both benign and malignant eyelid lesions. For the benign category, a total of 373 images were sourced. In comparison, the malignant category has 186 images. Based on the accuracy values, the model with 3 epochs and a learning rate of 0.0001 exhibited the best performance, achieving an accuracy of 0.748 with a standard deviation of 0.034. At a sensitivity of 69%, the model has a corresponding specificity of 82%. To further understand the decision-making process of our model, we employed heatmap visualization techniques, specifically Gradient-weighted Class Activation Mapping. Discussion: This study introduces a dependable model-aided diagnostic technology for assessing eyelid skin lesions. The model demonstrated accuracy comparable to human evaluation, effectively determining whether a lesion raises a high suspicion of malignancy or is benign. Such a model has the potential to alleviate the burden on the healthcare system, particularly benefiting rural areas and enhancing the efficiency of clinicians and overall healthcare.

Keywords: machine learning;, eyelid skin tumors;, decision-making process;, heatmap visualization techniques

Procedia PDF Downloads 4
20180 Advanced Textiles for Soldier Clothes Based on Coordination Polymers

Authors: Hossam E. Emam

Abstract:

The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.

Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent

Procedia PDF Downloads 181
20179 Asymmetric Warfare: Exploratory Study of the Implicit Defense Strategy of the People's Republic of China in 2012-2016

Authors: María Victoria Alvarez Magañini, Lautaro Nahuel Rubbi

Abstract:

According to different theories, the hegemonic war between the United States and the People's Republic of China seems to be imminent. However, nowadays, it is clear that China's conventional military capacity is inferior to that of the United States. Nevertheless, the conditions that in the past were considered to be an indicator of validity in asymmetrical warfare, at present, in a possible asymmetric war scenario, are no longer considered to be taken as such. The military capacity is not the only concept that represents the main indicator of victory. The organisation and the use of forces are also an essential part of it. The present paper aims to analyze the Chinese Defense Strategy in relation to the concept of asymmetric warfare in the face of a possible war with the United States. The starting point will be developed on the basis of application of the theory which corresponds to the concept aforementioned making focus on recent developments of the People’s Republic of China in the field of non-conventional defense. A comparative analysis of the conventional forces of both powers/countries will also be carried out.

Keywords: asymmetric warfare, China, United States, hegemonic warfare

Procedia PDF Downloads 266
20178 Decision Support System for the Management and Maintenance of Sewer Networks

Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar

Abstract:

This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.

Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling

Procedia PDF Downloads 640