Search results for: linear vector
3803 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability
Authors: Mohsina Akhter
Abstract:
Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics
Procedia PDF Downloads 3113802 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme
Authors: Arun Kumar Yadav, Badam Singh Kushvah
Abstract:
In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control
Procedia PDF Downloads 1893801 Thiourea: Single Crystal with Non Linear Optical Characteristics
Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj
Abstract:
During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea
Procedia PDF Downloads 1423800 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 723799 2-Dimensional Kinematic Analysis on Sprint Start with Sprinting Performance of Novice Athletes
Authors: Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan, Ranjan Chakravarty
Abstract:
The purpose of the study was to assess the effect of 2D kinematical selected variables on sprint start with sprinting performance of novice athletes. Six (3 National and 3 State level) athletes of sports authority of India, Guwahati has been selected for this study. The mean (M) and standard deviation (SD) of sprinters were age (17.44, 1.55), height (1.74m, .84m), weight (62.25 kg, 4.55), arm length (65.00 cm, 3.72) and leg length (96.35 cm, 2.71). Biokin-2D motion analysis system V4.5 can be used for acquiring two-dimensional kinematical data/variables on sprint start with Sprinting Performance. For the purpose of kinematic analysis a standard motion driven camera which frequency of the camera was 60 frame/ second i.e. handy camera of Sony Company were used. The sequence of photographic was taken under controlled condition. The distance of the camera from the athletes was 12 mts away and was fixed at 1.2-meter height. The result was found that National and State level athletes significant difference in there, trajectory knee, trajectory ankle, displacement knee, displacement ankle, linear velocity knee, linear velocity ankle, and linear acceleration ankle whereas insignificant difference was found between National and State level athletes in their linear acceleration knee joint on sprint start with sprinting performance. For all the Statistical test the level of significance was set at p<0.05.Keywords: 2D kinematic analysis, sprinting performance, novice athletes, sprint start
Procedia PDF Downloads 3233798 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices
Authors: Qinyi Mei, Li-Ping Wang
Abstract:
MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.Keywords: linear diffusion layer, circulant matrix, lightweight, maximum distance separable (MDS) matrix
Procedia PDF Downloads 4103797 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method
Procedia PDF Downloads 5283796 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities
Authors: Chusak Thanawattano, Roongroj Bhidayasiri
Abstract:
This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation
Procedia PDF Downloads 4433795 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model
Authors: Ameen Alawneh
Abstract:
The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution
Procedia PDF Downloads 4483794 Decomposition of Third-Order Discrete-Time Linear Time-Varying Systems into Its Second- and First-Order Pairs
Authors: Mohamed Hassan Abdullahi
Abstract:
Decomposition is used as a synthesis tool in several physical systems. It can also be used for tearing and restructuring, which is large-scale system analysis. On the other hand, the commutativity of series-connected systems has fascinated the interest of researchers, and its advantages have been emphasized in the literature. The presentation looks into the necessary conditions for decomposing any third-order discrete-time linear time-varying system into a commutative pair of first- and second-order systems. Additional requirements are derived in the case of nonzero initial conditions. MATLAB simulations are used to verify the findings. The work is unique and is being published for the first time. It is critical from the standpoints of synthesis and/or design. Because many design techniques in engineering systems rely on tearing and reconstruction, this is the process of putting together simple components to create a finished product. Furthermore, it is demonstrated that regarding sensitivity to initial conditions, some combinations may be better than others. The results of this work can be extended for the decomposition of fourth-order discrete-time linear time-varying systems into lower-order commutative pairs, as two second-order commutative subsystems or one first-order and one third-order commutative subsystems.Keywords: commutativity, decomposition, discrete time-varying systems, systems
Procedia PDF Downloads 1103793 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3873792 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 6373791 Linear Complementary Based Approach for Unilateral Frictional Contact between Wheel and Beam
Authors: Muskaan Sethi, Arnab Banerjee, Bappaditya Manna
Abstract:
The present paper aims to investigate a suitable contact between a wheel rolling over a flexible beam. A Linear Complementary (LCP) based approach has been adopted to simulate the contact dynamics for a rigid wheel traversing over a flexible Euler Bernoulli simply supported beam. The adopted methodology is suitable to incorporate the effect of frictional force acting at the wheel-beam interface. Moreover, the possibility of the generation of a gap between the two bodies has also been considered. The present method is based on a unilateral contact assumption which assumes that no penetration would occur when the two bodies come in contact. This assumption helps to predict the contact between wheels and beams in a more practical sense. The proposed methodology is validated with the previously published results and is found to be in good agreement. Further, this method is applied to simulate the contact between wheels and beams for various railway configurations. Moreover, different parametric studies are conducted to study the contact dynamics between the wheel and beam more thoroughly.Keywords: contact dynamics, linear complementary problem, railway dynamics, unilateral contact
Procedia PDF Downloads 1023790 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: high-speed transportation, hyperloop, railways transportation, single-sided linear induction Motor (SLIM)
Procedia PDF Downloads 2763789 Construction of Finite Woven Frames through Bounded Linear Operators
Authors: A. Bhandari, S. Mukherjee
Abstract:
Two frames in a Hilbert space are called woven or weaving if all possible merge combinations between them generate frames of the Hilbert space with uniform frame bounds. Weaving frames are powerful tools in wireless sensor networks which require distributed data processing. Considering the practical applications, this article deals with finite woven frames. We provide methods of constructing finite woven frames, in particular, bounded linear operators are used to construct woven frames from a given frame. Several examples are discussed. We also introduce the notion of woven frame sequences and characterize them through the concepts of gaps and angles between spaces.Keywords: frames, woven frames, gap, angle
Procedia PDF Downloads 1933788 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4753787 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks
Procedia PDF Downloads 1423786 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services
Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar
Abstract:
This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.Keywords: civil-id disclosure, awareness, linear regression, multiple regression
Procedia PDF Downloads 573785 Cars Redistribution Optimization Problem in the Free-Float Car-Sharing
Authors: Amine Ait-Ouahmed, Didier Josselin, Fen Zhou
Abstract:
Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem.Keywords: one-way car-sharing, vehicle redistribution, car reservation, linear programming
Procedia PDF Downloads 3483784 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 2783783 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 3123782 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap
Authors: Alex Contarino
Abstract:
Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.Keywords: linear programming, optimization, roster management, salary cap
Procedia PDF Downloads 1113781 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 1503780 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4453779 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters
Authors: Rama Debbarma
Abstract:
The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.Keywords: linear base isolator, earthquake, optimization, uncertain parameters
Procedia PDF Downloads 4343778 Frequency Identification of Wiener-Hammerstein Systems
Authors: Brouri Adil, Giri Fouad
Abstract:
The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science
Procedia PDF Downloads 5373777 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle
Authors: Kaushalendra K. Khadanga, Lee Hee Hyol
Abstract:
Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.Keywords: active suspension, bending vibration, railway vehicle, vibration control
Procedia PDF Downloads 2613776 Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)
Authors: Robert Jacobsen
Abstract:
Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated.Keywords: hydrology, mapping, high-definition, inundation
Procedia PDF Downloads 803775 Simulation-Based Investigation of Ferroresonance in Different Transformer Configurations
Authors: George Eduful, Yuanyuan Fan, Ahmed Abu-Siada
Abstract:
Ferroresonance poses a substantial threat to the quality and reliability of power distribution systems due to its inherent characteristics of sustained overvoltages and currents. This paper aims to enhance the understanding and reduce the ferroresonance threat by investigating the susceptibility of different transformer configurations using MATLAB/Simulink simulations. To achieve this, four 200 kVA transformers with different vector groups (D-Yn, Yg-Yg, Yn-Yn, and Y-D11) and core types (3-limb, 5-limb, single-phase) were systematically exposed to controlled ferroresonance conditions. The impact of varying the length of the 11 kV cable connected to the transformers was also examined. Through comprehensive voltage, current, and total harmonic distortion analyses, the performance of each configuration was evaluated and compared. The results of the study indicate that transformers with Y-D11 and Yg-Yg configurations exhibited lower susceptibility to ferroresonance, in comparison to those with D-Y11 and Yg-Yg configurations. This implies that the Y-D11 and Yg-Yg transformers are better suited for applications with high risks of ferroresonance. The insights provided by this study are of significant value for the strategic selection and deployment of transformers in power systems, particularly in settings prone to ferroresonance. By identifying and recommending transformer configurations that demonstrate better resilience, this paper contributes to enhancing the overall robustness and reliability of power grid infrastructure.Keywords: about cable-connected, core type, ferroresonance, over voltages, power transformer, vector group
Procedia PDF Downloads 403774 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 132