Search results for: green building design
16405 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area
Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes
Abstract:
Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions
Procedia PDF Downloads 34716404 Seismic Behaviour of Bi-Symmetric Buildings
Authors: Yogendra Singh, Mayur Pisode
Abstract:
Many times it is observed that in multi-storeyed buildings the dynamic properties in the two directions are similar due to which there may be a coupling between the two orthogonal modes of the building. This is particularly observed in bi-symmetric buildings (buildings with structural properties and periods approximately equal in the two directions). There is a swapping of vibrational energy between the modes in the two orthogonal directions. To avoid this coupling the draft revision of IS:1893 proposes a minimum separation of more than 15% between the frequencies of the fundamental modes in the two directions. This study explores the seismic behaviour of bi-symmetrical buildings under uniaxial and bi-axial ground motions. For this purpose, three different types of 8 storey buildings symmetric in plan are modelled. The first building has square columns, resulting in identical periods in the two directions. The second building, with rectangular columns, has a difference of 20% in periods in orthogonal directions, and the third building has half of the rectangular columns aligned in one direction and other half aligned in the other direction. The numerical analysis of the seismic response of these three buildings is performed by using a set of 22 ground motions from PEER NGA database and scaled as per FEMA P695 guidelines to represent the same level of intensity corresponding to the Design Basis Earthquake. The results are analyzed in terms of the displacement-time response of the buildings at roof level and corresponding maximum inter-storey drift ratios.Keywords: bi-symmetric buildings, design code, dynamic coupling, multi-storey buildings, seismic response
Procedia PDF Downloads 24216403 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract
Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie
Abstract:
In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk
Procedia PDF Downloads 16116402 Urban Resilience and Planning in the Perspective of Community
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
Urban community is constitute the entire city and its management ‘cell’, let ‘cells’ with growth and self-regeneration capacity and persistence, to allow the city with infinite vigor and vitality of the source; with toughness community mankind's adaptation to the basic unit of social risk, toughness of the city from the community to create a point of building is urban toughness of top-down construction mode of supplement, is of positive significance on the toughness of the urban construction. Based on the basic concept of resilience, this paper reviews the research on the four main areas of the study of urban resilience (i.e., the engineering toughness, ecological resilience, economic resilience, and social resilience, etc.). Studies and comments and summarizes the basic characteristic and main content of the four kind of toughness. Based on, from the city - community level and community level for building community resilience, including the level of urban community and create a Unicom, inclusiveness and openness of the community; community-level lifted from the four angles of the engineering community toughness, ecological toughness, resilience, social resilience, mainly including enhanced the toughness of the infrastructure, green infrastructure of toughness, resilience, social network and social relations, building with a sense of belonging, inclusive, multicultural community. Finally, summarize and prospect the resilience of the community.Keywords: resilience, community resilience, urban resilience, construction strategies
Procedia PDF Downloads 25116401 Green Intellectual Capital and Green Supply Chain Performance
Authors: Mohammed Ibrahim Bu Haya, Abdelmoneim Bahyeldin Mohamed Metwally
Abstract:
This paper examines the impact of Green Intellectual Capital (GIC) on Green Supply Chain Performance (GSCP). Further, the study examines the moderating role of external pressures (EP) on the relationship between GIC and GSCP. Data were collected from employees working in Egyptian hotels and tourism companies (N= 366). The collected data were analyzed using smart partial least squares (Smart-PLS) software. The current research indicated that there is a positive and significant impact of all GIC components on GSCP. The results also revealed that EP were found to moderate the relationship between GIC and GSCP. The study model was able to explain 63.1% of the variance in GSCP. The findings of this study serve as a pivotal yardstick for guiding corporate policy formulation, offering valuable insights to drive continuous improvements in supply chain management and performance. Furthermore, the research holds substantial implications for managerial strategies by shedding light on the potential of GIC and EP to elevate GSCP. Positioned as one of the initial studies to delve into the moderating role of EP in the relationship between GIC and GSCP, this research offers insights within an emerging market context.Keywords: green intellectual capital, green supply chain, supply chain performance, external pressures, emerging economy, Egypt
Procedia PDF Downloads 5716400 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 16216399 Climate Change Based Frontier Research in Landscape Architecture
Authors: Xiaoyan Wang, Zhongde Wang
Abstract:
The issue of climate change, which originated in the middle of the twentieth century, has become a focus of international political, academic, and non-governmental organizations and public attention. In order to address the problems caused by climate change, the Chinese government has proposed a dual-carbon target and taken some national measures, such as ecological priority and green low-carbon development. These goals and measures are highly aligned with the values of the landscape architecture industry. This is an opportunity for the architectural discipline and the landscape architecture industry, so it is very necessary to summarize and analyze the hotspots related to climate change in the field of building science in China, which can assist the landscape architecture industry and related organizations in formulating more rational professional goals and taking actions that contribute to the betterment of societal, environmental development. Through the study, it is found as follows: firstly, after 20 years of rapid development, the research on climate change in the major architectural disciplines has shown a trend of diversification of research perspectives, interdisciplinary cross-cutting, and broadening of content; secondly, the research contents of landscape architecture focuses on the strategies to adapt to climate change, such as selection of urban tree species, the urban green infrastructure space layout, and the resilient city. Finally, in the future, climate change-based landscape architecture research will make the content system more diversified, but at the same time, it is still necessary to further deepen the research on quantitative methodology and construct scale systematic planning and design methods.Keywords: climate change, landscape architecture, knowledge mapping, cites-pace
Procedia PDF Downloads 5516398 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption
Authors: Hadis Pouyafar, D. Matin Alaghmandan
Abstract:
Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells
Procedia PDF Downloads 9616397 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests
Authors: N. Türkmenoğlu Bayraktar, E. Kishalı
Abstract:
Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.Keywords: building envelope, IRT, refurbishment, non-destructive test
Procedia PDF Downloads 38416396 A Study on How to Develop the Usage Metering Functions of BIM (Building Information Modeling) Software under Cloud Computing Environment
Authors: Kim Byung-Kon, Kim Young-Jin
Abstract:
As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of BIM (Building Information Modeling) technologies for 3D design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed how to develop the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. To this end, the author surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the results & findings of the foregoing survey & analysis, the author proposed herein how to optimally develop the usage metering functions of cloud BIM software.Keywords: construction IT, BIM (Building Information Modeling), cloud computing, BIM-based cloud computing, 3D design, cloud BIM
Procedia PDF Downloads 50716395 Imidocloprid as a Systemic-Acquired Resistant (SAR) Inducer in Nicotiana tabacum Var. Samsun NN Infected with Tobacco Mild Green Mosaic Virus
Authors: Mohammad Reza Hossein Zadeh
Abstract:
Plants have different layers of defense responses against biotic and abiotic stresses. One of the well-defined defense mechanism in plants is systemic acquired resistance (SAR) against a broad-range of pathogens. Salicylic acid (SA) plays a crucial role in regulation of the SAR pathway. It has been proved that Chemically SA-like compounds can mimic the SA signaling role. Imidocloprid is an insecticide being used to control whiteflies on crop plants. In order to study the possible role of Imidocloprid as an elicitor of SAR in plants, experiments were conducted in a completely randomized design frame with three treatments and duplicates on the detached leaves and whole Nicotiana tabacum var. Samsun NN. plants inoculated with Tobacco mild green mosaic virus (TMGMV). Compared with the effect of other SAR-inducers such as SA, Imidoclorid conferred a robust SAR induction in the infected plants. The results suggested that Imidocloprid even more powerful than SA can be considered as strong SAR inducer in the infected plants with viruses, which develop the local lesion symptoms.Keywords: imidocloprid, Nicotiana tabacum var. Samsun NN, SAR, tobacco mild green, mosaic virus
Procedia PDF Downloads 58816394 Green Open Space in Sustainable Housing and Islamic Values Perspectives – Case Study Kampung Kauman Malang
Authors: Nunik Junara, Sugeng Triyadi
Abstract:
Sustainable Housing in Islamic perspective, can be defined as a multi-dimensional process that seeks to achieve a balance between economic and socio-cultural aspects on the side, and environmental aspect on the other. There are many quotes verses in the Quran and Hadith that leads to the belief that Islam as a Rahmatan lil Alamin, where men are encouraged to act wisely in treating nature and all living things in it. One aspect of the natural environment that closed to human is plants. In the settlement, the availability of plants or also called green open space is highly recommended. The availability of green open space in the neighborhood, both the public and private green open spaces is expected to reduce the effects of global warming that has engulfed various parts of the world. Green open space that can be viewed from the angle of eco-aestetic and eco-medical in sustainable architecture, is expected to increase the temperature and provide aesthetic impression to the surrounding environment. This paper attempts to discuss the principles of Islamic values related to the natural environment as a major resource for sustainability. This paper also aims to raise awareness of the importance of the theme of sustainability in settlements, especially in big cities. Analysis of the availability of green open space in kampung Kauman Malang is one example of the effort to apply the principles of sustainable housing.Keywords: green open space, sustainable housing, Islamic values, Kampung Kauman Malang
Procedia PDF Downloads 41216393 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea
Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang
Abstract:
The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system
Procedia PDF Downloads 14316392 Green Windows of Opportunity in Latin American Countries
Authors: Fabianna Bacil, Zenathan Hasannundin, Clovis Freire
Abstract:
The green transition opens green windows of opportunity – temporary moments in which there are lower barriers and shorter learning periods for developing countries to enter emerging technologies and catch-up. However, taking advantage of these windows requires capabilities in national sectoral systems to adopt and develop technologies linked to green sectors as well as strong responses to build the required knowledge, skills, and infrastructure and foster the growth of targeted sectors. This paper uses UNCTAD’s frontier technology readiness index to analyse the current position of Latin America and the Caribbean to use, adopt, and adapt frontier technologies, examining the preconditions in the region to take up windows of opportunity that arise with the green transition. The index highlights the inequality across countries in the region, as well as gaps in capabilities dimensions, especially in terms of R&D. Moving to responses, it highlights industrial policies implemented to foster the growth of green technologies, emphasising the essential role played by the state to build and strengthen capabilities and provide infant industry protection that enables the growth of these sectors. Overall, while there are exceptions, especially in the Brazilian case, countries in Latin America and the Caribbean should focus on strengthening their capabilities to be better positioned, especially in terms of knowledge creation, infrastructure, and financing availability.Keywords: Green technologies, Industrial policy, Latin America, windows of opportunity
Procedia PDF Downloads 6416391 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.Keywords: adaptability, durability, open building, service life, structural building system
Procedia PDF Downloads 43716390 Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil
Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto
Abstract:
The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.Keywords: green and blue infrastructure, sustainable drainage, urban waters, ecosystem services
Procedia PDF Downloads 11816389 Soil Reinforcement by Stone Columns
Authors: Saou Mohamed Amine
Abstract:
The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects.Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics
Procedia PDF Downloads 43316388 Solar PV System for Automatic Guideway Transit (AGT) System in BPSU Main Campus
Authors: Nelson S. Andres, Robert O. Aguilar, Mar O. Tapia, Meeko C. Masangcap, John Denver Catapang, Greg C. Mallari
Abstract:
This study focuses on exploring the possibility of using solar PV as an alternative for generating electricity to electrify the AGT System installed in BPSU Main Campus instead of using the power grid. The output of this study gives BPSU the option to invest on solar PV system to pro-actively respond to one of UN’s Sustainable Development Goals of having reliable, sustainable and modern energy sources to reduce energy pollution and climate change impact in the long run. Thus, this study covers the technical as well as the financial studies, which BPSU can also be used to outsource funding from different government agencies. For this study, the electrical design and requirements of the on-going DOST AGT system project are carefully considered. In the proposed design, the AGT station has installed with a rechargeable battery system where the energy harnessed by the solar PV panels installed on the rooftop of the station/NCEA building shall be directed to. The solar energy is then directly supplied to the electric double-layer capacitors (EDLC's) batteries and thus transmitted to other types of equipment in need. When the AGT is not in use, the harnessed energy may be used by NCEA building, thus, lessening the energy consumption of the building from the grid. The use of solar PV system with EDLC is compared with the use of an electric grid for the purpose of electrifying the AGT or the NCEA building (when AGT is not in use). This is to figure how much solar energy are accumulated by the solar PV to accommodate the need for coaches’ motors, lighting, air-conditioning units, door sensor, panel display, etc. The proposed PV Solar design, as well as the data regarding the charging and discharging of batteries and the power consumption of all AGT components, are simulated for optimization, analysis and validation through the use of PVSyst software.Keywords: AGT, Solar PV, railway, EDLC
Procedia PDF Downloads 8416387 Tokenization of Blue Bonds as an Emerging Green Finance Tool
Authors: Rodrigo Buaiz Boabaid
Abstract:
Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.Keywords: blue carbon, blue bonds, green finance, Tokenization, blockchain solutions
Procedia PDF Downloads 7316386 Nano-Zinc Oxide: A Powerful and Recyclable Catalyst for Chemospecific Synthesis of Dicoumarols Based on Aryl Glyoxals
Authors: F. Jafari, S. GharehzadehShirazi, S. Khodabakhshi
Abstract:
An efficient, simple, and environmentally benign procedure for the one-pot synthesis of dicoumarols was reported. The reaction entails the condensation of aryl glyoxals and 4-hydroxyxoumarin in the presence of catalytic amount of zinc oxide nanoparticles (ZnO NPs) as recyclable catalyst in aqueous media. High product yields and use of clean conditions are important factors of green chemistry.Part of our continued interest to achieve high atom economic reactions by the use safe catalysts. The reaction mixture was refluxed with catalytic amount (3 mol%) of zinc oxide nanoparticles.Reducing the amount of toxic waste and byproducts arising from chemical reactions is an important issue in the context of green chemistry. In comparison with commonly organic solvents, the aqueous media is cheaper and more environmentally friendly. Avoiding the use of organic solvents is an important way to prevent waste in chemical processes. In the context of green and sustainable chemistry, one ofthe most promising approaches is the use of water as the reaction media. In recent years, there has been increasing recognition that water is an attractive media for manyorganic reactions. Using water continues to attract wide attention among synthetic chemists in the design of new synthetic methods.Keywords: zinc oxide, dicoumarol, aryl glyoxal, green chemistry, catalyst
Procedia PDF Downloads 35916385 Evaluating the Impact of Urban Green Spaces on Urban Microclimate of Lahore: A Rapidly Urbanizing Metropolis of the Punjab-Pakistan
Authors: Muhammad Nasar-U-Minallah, Dagmar Haase, Salman Qureshi, Safdar Ali Shirazi
Abstract:
Urban green spaces (UGS) play a key role in the urban ecology of an area since they provide significant ecological services to compensate for natural environment functions damaged by the rapid growth of urbanization. The transformation of urban green specs to impervious landscapes has been recognized as a key factor prompting the distinctive urban heat and associated microclimatic changes. There is no doubt that urban green spaces offer a range of ecosystem services that can help to mitigate the ill effects of urbanization, heat anomalies, and climate change. The present study attempts to appraise the impact of urban green spaces on the urban thermal environment for the development of the microclimatic conditions in Lahore, Pakistan. The influence of urban heat has been studied through Landsat 8 data. The land surface temperature (LST) of Lahore was computed through the Radiative transfer method (RTM). The spatial variation of land surface temperature is retrieved to describe their local heat effect on urban microclimate. The association between the LST, normalized difference vegetation index, and the normalized difference built-up index are investigated to explore the impact of the urban green spaces and impervious surfaces on urban microclimate. The results of this study show significant changes in (impervious land surface 18% increase) land use within the study area. However, conversion of natural green cover to commercial and residential uses considerably increases the LST. Furthermore, results show that green spaces were the major heat sinks while impervious landscapes were the major heat source in the study area. Urban green spaces reveal 1 to 3℃ lower LST associated with their surrounding urban built-up area. This study shows that urban green spaces will help to mitigate the effect of urban microclimate and it is significant for the sustainable urban environment as well as to improve the quality of life of the urban inhabitants.Keywords: thermal environmental, urban green space, cooling effect, microclimate, Lahore
Procedia PDF Downloads 10616384 The Impact of Corporate Social Responsibilities on Employees’ Green Behavior: The Moderating Role of Organizational Trust
Authors: Zubair Ahmad
Abstract:
Drawing from social exchange theory, this study proposes to explore the association between corporate social responsibility as external CSR and Internal CSR with employees' green behavior. Furthermore, the author also analyzed the moderating role of organizational trust among the aforementioned associations. The target respondents for this descriptive study were employees working hotel industry of Pakistan. An online questionnaire link was sent to hotel managers and is requested to share the questionnaire link with employees. The respondents for this study were selected through the convenience sampling technique. The collected data from participants is analyzed through AMOS and SPSS. The findings show that both internal corporate social responsibility and external corporate social responsibility exert a positive and significant influence on employees' green behavior. Thus it is concluded that the key driver behind the green behavior of hotel employees is the social setting of their workplace. Findings also revealed that organizational trust plays a positive role in enhancing the green behavior of hotel employees. This study extends the literature on corporate social responsibility by exploring the boundary role of organizational trust between internal and external corporate social responsibility and employees' green behavior in hotels. Moreover, CSR activities should be performed for attaining a competitive edge and maintaining a balance between progress and sustainability of the environment.Keywords: corporate social responsibility, internal corporate social responsibility, external corporate social responsibility, social exchange theory, employee green behavior, organizational trust
Procedia PDF Downloads 10716383 Health Post A Sustainable Prototype for the Third World
Authors: Chizzoniti Domenico, Beggiora Klizia, Cattani Letizia, Moscatelli Monica
Abstract:
This paper concerns the study of sustainable construction materials applied on the "Health Post", a prototype for the primary health care situated in alienated areas of the world. It's suitable for social and climatic Sub-Saharan context; however, it could be moved in other countries of the world with similar urgent needs. The idea is to create a Health Post with local construction materials that have a low environmental impact and promote the local workforce allowing reuse of traditional building techniques lowering production costs and transport. The aim of Primary Health Care Centre is to be a flexible and expandable structure identifying a modular form that can be repeated several times to expand its existing functions. In this way it could be not only a health care centre but also a socio-cultural facility.Keywords: low costs building, sustainable construction materials, green construction system, prototype, health care, emergency
Procedia PDF Downloads 48216382 Planning of Green Infrastructure on a City Level
Authors: James Li, Darko Joksimovic
Abstract:
Urban development changes the natural hydrologic cycle, resulting in storm water impacts such as flooding, water quality degradation, receiving water erosion, and ecosystem deterioration. An integrated storm water managementapproach utilizing source and conveyance (termed green infrastructure) and end-of-pipe control measures is an effective way to manage urban storm water impacts. This paper focuses onplanning green infrastructure (GI) at the source and along the drainage system on a city level. It consists of (1)geospatial analysis of feasible GI using physical suitability; (2) modelling of cumulative GI's stormwater performance; and (3) cost-effectiveness analysis to prioritize the implementation of GI. A case study of the City of Barrie in Ontario, Canada, was used to demonstrate the GI's planning.Keywords: cost-effectiveness of storm water controls, green infrastructure, urban storm water, city-level master planning
Procedia PDF Downloads 9816381 Sensitivity, Specificity and Efficiency Real-Time PCR Using SYBR Green Method to Determine Porcine and Bovine DNA Using Specific Primer Cytochrome B Gene
Authors: Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman, Mohd Sukri Hassan
Abstract:
Real-time PCR is a molecular biology technique that is currently being widely used for halal services to differentiating between porcine and bovine DNA. The useful of technique become very important for student or workers (who works in the laboratory) to learn how the technique could be run smoothly without fail. Same concept with conventional PCR, real-time PCR also needed DNA template, primer, enzyme polymerase, dNTP, and buffer. The difference is in real-time PCR, have additional component namely fluorescent dye. The most common use of fluorescent dye in real-time PCR is SYBR green. The purpose of this study was to find out how sensitive, specific and efficient real-time PCR technique was combined with SYBR green method and specific primers of CYT b. The results showed that real-time PCR technique using SYBR Green, capable of detecting porcine and bovine DNA concentrations up to 0.0001 µl/ng. The level of efficiency for both types of DNA was 91% (90-110). Not only that in specific primer CYT b bovine primer could detect only bovine DNA, and porcine primer could detect only porcine primer. So, from the study could be concluded that real-time PCR technique that was combined with specific primer CYT b and SYBR green method, was sensitive, specific and efficient to detect porcine and bovine DNA.Keywords: sensitivity, specificity, efficiency, real-time PCR, SYBR green, Cytochrome b, porcine DNA, bovine DNA
Procedia PDF Downloads 31616380 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization
Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller
Abstract:
The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization
Procedia PDF Downloads 3616379 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings
Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada
Abstract:
The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code
Procedia PDF Downloads 15716378 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 15516377 Building Exoskeletons for Seismic Retrofitting
Authors: Giuliana Scuderi, Patrick Teuffel
Abstract:
The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting
Procedia PDF Downloads 42016376 Greening of Supply Chains: Benefits and Challenges Faced
Authors: Anurag Reddy Ramireddy, Abrar Ahmed, G. Sourya Sri Harsha, Pushkala Muralidharan
Abstract:
Supply chains have been developing over time since the inception of commercial trade and barter. The Green Supply Chain Management (GSCM) is a powerful way to differentiate a company from its competitors and it can greatly influence the plan success. With increased awareness to corporate responsibility and the requirement to meet the terms with environmental policy, GSCM is becoming increasingly important for companies. This paper explains the concept of green supply chain management, the difference between conventional supply chain management and green supply management and how GSCM benefits organizations while at the same time supporting a sustainable environment system. An effort has also been made to analyse research already done in this field while exploring the challenges and barriers that organizations face in implementing GSCM practices in their existing systems.Keywords: corporate social responsibility, green supply chain management, sustainability
Procedia PDF Downloads 385