Search results for: geographically weighted principal components analysis
30459 Knowledge Management Best Practice Model in Higher Learning Institution: A Systematic Literature Review
Authors: Ismail Halijah, Abdullah Rusli
Abstract:
Introduction: This systematic literature review aims to identify the Knowledge Management Best Practice components in the Knowledge Management Model for Higher Learning Institutions environment. Study design: Systematic literature review. Methods: A systematic literature re-view of Knowledge Management Best Practice to identify and define the components of Best Practice from the Knowledge Management models was conducted recently. Results: This review of published papers of conference and journals’ articles shows the components of Best Practice in Knowledge Management are basically divided into two aspect which is the soft aspect and the hard aspect. The lacks of combination of these two aspects into an integrated model decelerate Knowledge Management Best Practice to fully throttle. Evidence from the literature shows the lack of integration of this two aspects leads to the immaturity of the Higher Learning Institution (HLI) towards the implementation of Knowledge Management System. Conclusion: The first steps of identifying the attributes to measure the Knowledge Management Best Practice components from the models in the literature will led to the definition of the Knowledge Management Best Practice component for the higher learning environment.Keywords: knowledge management, knowledge management system, knowledge management best practice, knowledge management higher learning institution
Procedia PDF Downloads 59230458 The Effect of MOOC-Based Distance Education in Academic Engagement and Its Components on Kerman University Students
Authors: Fariba Dortaj, Reza Asadinejad, Akram Dortaj, Atena Baziyar
Abstract:
The aim of this study was to determine the effect of distance education (based on MOOC) on the components of academic engagement of Kerman PNU. The research was quasi-experimental method that cluster sampling with an appropriate volume was used in this study (one class in experimental group and one class in controlling group). Sampling method is single-stage cluster sampling. The statistical society is students of Kerman Payam Noor University, which) were selected 40 of them as sample (20 students in the control group and 20 students in experimental group). To test the hypothesis, it was used the analysis of univariate and Co-covariance to offset the initial difference (difference of control) in the experimental group and the control group. The instrument used in this study is academic engagement questionnaire of Zerang (2012) that contains component of cognitive, behavioral and motivational engagement. The results showed that there is no significant difference between mean scores of academic components of academic engagement in experimental group and the control group on the post-test, after elimination of the pre-test. The adjusted mean scores of components of academic engagement in the experimental group were higher than the adjusted average of scores after the test in the control group. The use of technology-based education in distance education has been effective in increasing cognitive engagement, motivational engagement and behavioral engagement among students. Experimental variable with the effect size 0.26, predicted 26% of cognitive engagement component variance. Experimental variable with the effect size 0.47, predicted 47% of the motivational engagement component variance. Experimental variable with the effect size 0.40, predicted 40% of behavioral engagement component variance. So teaching with technology (MOOC) has a positive impact on increasing academic engagement and academic performance of students in educational technology. The results suggest that technology (MOOC) is used to enrich the teaching of other lessons of PNU.Keywords: educational technology, distance education, components of academic engagement, mooc technology
Procedia PDF Downloads 14930457 The Factors of Supply Chain Collaboration
Authors: Ghada Soltane
Abstract:
The objective of this study was to identify factors impacting supply chain collaboration. a quantitative study was carried out on a sample of 84 Tunisian industrial companies. To verify the research hypotheses and test the direct effect of these factors on supply chain collaboration a multiple regression method was used using SPSS 26 software. The results show that there are four factors direct effects that affect supply chain collaboration in a meaningful and positive way, including: trust, engagement, information sharing and information qualityKeywords: supply chain collaboration, factors of collaboration, principal component analysis, multiple regression
Procedia PDF Downloads 4930456 Towards Automated Remanufacturing of Marine and Offshore Engineering Components
Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua
Abstract:
Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering
Procedia PDF Downloads 32630455 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC
Authors: Mohamed Zellagui, Heba Ahmed Hassan
Abstract:
This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method
Procedia PDF Downloads 50030454 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 20530453 TARF: Web Toolkit for Annotating RNA-Related Genomic Features
Abstract:
Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.Keywords: RNA-related genomic features, annotation, visualization, web server
Procedia PDF Downloads 20730452 Deleterious SNP’s Detection Using Machine Learning
Authors: Hamza Zidoum
Abstract:
This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM
Procedia PDF Downloads 37730451 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease
Authors: Mehdi Razeghi
Abstract:
Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering
Procedia PDF Downloads 8230450 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 51730449 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions
Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui
Abstract:
During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering
Procedia PDF Downloads 41230448 A New Index for the Differential Diagnosis of Morbid Obese Children with and without Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Metabolic syndrome (MetS) is a severe health problem which is common among obese individuals. The components of MetS are rather stable in adults compared to the components discussed for children. Due to the ambiguity in this group of the population, how to diagnose MetS in morbid obese (MO) children still constitutes a matter of discussion. For this purpose, a formula, which facilitates the diagnosis of MetS in MO children, was investigated. The aim of this study was to develop a formula which was capable of discriminating MO children with and without MetS findings. Study population comprised MO children. Age and sex-dependent body mass index (BMI) percentiles of the children were above 99. Metabolic syndrome components were also determined. Elevated systolic and diastolic blood pressures (SBP and DBP), elevated fasting blood glucose (FBG), elevated triglycerides (TRG), and/or depressed high density lipoprotein cholesterol (HDL-C) in addition to central obesity were listed as MetS components for each child. Presence of at least two of these components confirmed that the case was MetS. Two groups were constituted. In the first group, there were forty-two MO children without MetS components. Second group was composed of forty-four MO children with at least two MetS components. Anthropometric measurements, including weight, height, waist, and hip circumferences, were performed following physical examination. Body mass index and homeostatic model assessment of insulin resistance values were calculated. Informed consent forms were obtained from the parents of the children. Institutional Non-Interventional Ethics Committee approved the study design. Blood pressure values were recorded. Routine biochemical analysis, including FBG, insulin (INS), TRG, HDL-C were performed. The performance and the clinical utility of the Diagnostic Obesity Notation Model Assessment Metabolic Syndrome Index (DONMA MetS index) [(INS/FBG)/(HDL-C/TRG)*100] was tested. Appropriate statistical tests were applied to the study data. p value smaller than 0.05 was defined as significant. Metabolic syndrome index values were 41.6±5.1 in MO group and 104.4±12.8 in MetS group. Corresponding values for HDL-C values were 54.5±13.2 mg/dl and 44.2±11.5 mg/dl. There were statistically significant differences between the groups (p<0.001). Upon evaluation of the correlations between MetS index and HDL-C values, a much stronger negative correlation was found in MetS group (r=-0.515; p=0.001) in comparison with the correlation detected in MO group (r=-0.371; p=0.016). From these findings, it was concluded that the statistical significance degree of the difference between MO and MetS groups was highly acceptable for this recently introduced MetS index as expected. This was due to the involvement of all of the biochemically defined MetS components into the index. This is particularly important because each of these four parameters used in the formula is cardiac risk factor. Aside from discriminating MO children with and without MetS findings, MetS index introduced in this study is important from the cardiovascular risk point of view in MetS group of children.Keywords: children, fasting blood glucose, high density lipoprotein cholesterol, index, insulin, metabolic syndrome, morbid obesity, triglycerides.
Procedia PDF Downloads 9130447 Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization
Procedia PDF Downloads 46130446 Polymer in Electronic Waste: An Analysis
Authors: Anis A. Ansari, Aftab A. Ansari
Abstract:
Electronic waste is inundating the traditional solid-waste-disposal facilities, which are inadequately designed to handle and manage such type of new wastes. Since electronic waste contains mostly hazardous and even toxic materials, the seriousness of its effects on human health and the environment cannot be ignored in present scenario. Waste from the electronic industry is increasing exponentially day by day. From the last 20 years, we are continuously generating huge quantities of e-waste such as obsolete computers and other discarded electronic components, mainly due to evolution of newer technologies as a result of constant efforts in research and development in this sector. Polymers, one of the major constituents in almost every electronic waste, such as computers, printers, electronic equipment, entertainment devices, mobile phones, television sets etc., are if properly recycled can create a new business opportunity. This would not only create potential market for polymers to improve economy but also the priceless land used as dumping sites of electronic waste, can be utilized for other productive purposes.Keywords: polymer recycling, electronic waste, hazardous materials, electronic components
Procedia PDF Downloads 47430445 Extraction and Analysis of Anthocyanins Contents from Different Stage Flowers of the Orchids Dendrobium Hybrid cv. Ear-Sakul
Authors: Orose Rugchati, Khumthong Mahawongwiriya
Abstract:
Dendrobium hybrid cv. Ear-Sakul has become one of the important commercial commodities in Thailand agricultural industry worldwide, either as potted plants or as cut flowers due to the attractive color produced in flower petals. Anthocyanins are the main flower pigments and responsible for the natural attractive display of petal colors. These pigments play an important role in functionality, such as to attract animal pollinators, classification, and grading of these orchids. Dendrobium hybrid cv. Ear-Sakul has been collected from local area farm in different stage flowers (F1, F2-F5, and F6). Anthocyanins pigment were extracted from the fresh flower by solvent extraction (MeOH–TFA 99.5:0.5v/v at 4ºC) and purification with ethyl acetate. The main anthocyanins components are cyanidin, pelargonidin, and delphinidin. Pure anthocyanin contents were analysis by UV-Visible spectroscopy technique at λ max 535, 520 and 546 nm respectively. The anthocyanins contents were converted in term of monomeric anthocyanins pigment (mg/L). The anthocyanins contents of all sample were compared with standard pigments cyanidin, pelargonidin and delphinidin. From this experiment is a simple extraction and analysis anthocyanins content in different stage of flowers results shown that monomeric anthocyanins pigment contents of different stage flowers (F1, F2-F5 and F6 ): cyanidin – 3 – glucoside (mg/l) are 0.85+0.08, 24.22+0.12 and 62.12+0.6; Pelargonidin 3,5-di- glucoside(mg/l) 10.37+0.12, 31.06+0.8 and 81.58+ 0.5; Delphinidin (mg/l) 6.34+0.17, 18.98+0.56 and 49.87+0.7; and the appearance of extraction pure anthocyanins in L(a, b): 2.71(1.38, -0.48), 1.06(0.39,-0.66) and 2.64(2.71,-3.61) respectively. Dendrobium Hybrid cv. Ear-Sakul could be used as a source of anthocyanins by simple solvent extraction and stage of flowers as a guideline for the prediction amount of main anthocyanins components are cyanidin, pelargonidin, and delphinidin could be application and development in quantities, and qualities with the advantage for food pharmaceutical and cosmetic industries.Keywords: analysis, anthocyanins contents, different stage flowers, Dendrobium Hybrid cv. Ear-Sakul
Procedia PDF Downloads 15030444 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study
Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen
Abstract:
One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction
Procedia PDF Downloads 16030443 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France
Authors: Aiman Mazhar Qureshi, Ahmed Rachid
Abstract:
Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation
Procedia PDF Downloads 14830442 The Role of Tax Management Components in Creating Value or Increasing Risk of Tehran Stock Exchange Firms
Authors: Fereshteh Darash
Abstract:
Reflective tax management corresponds to the Agency Theory since it determines the motivation of managers for tax management actions and short-term and long-term consequences. Therefore, selection of tax strategy contributes to the tax and financial position of the firm in the future. The aim of the present research is to evaluate the effect of tax management components on risk-taking of firms listed in Tehran stock exchange by using regression analysis method. Results show that tax effective rate, tax risk and tax planning have no significant effect on the firm's future risk. Results suggest that stakeholders assess the effective tax rate and delay in tax payment in line with their benefits. They tend to accept the higher risk cost for reduction of tax payments and benefits of higher liquidity in current period. Hence, effective tax rate and tax risk have no significant effect on future risk of the firm. Moreover, tax planning yields no information regarding the predictability of the future profits and as a result, it has no significant effect on the future risk of the firm since specific goals of financial reporting are in priority for the stakeholders and regardless of the firm’s data analysis, they take investment decisions and they less intend to purchase the stocks in a rational manner.Keywords: tax management, tax effective rate, tax risk, tax planning, firm risk
Procedia PDF Downloads 13630441 Innovative Schools as Birthplaces for Promoting Educational Innovations: A Case Study of Two Hungarian Schools
Authors: Khin Khin Thant Sin
Abstract:
This study is a case study which investigates successful and ongoing bottom-up innovations for school improvement initiatives in Hungary. Two innovative schools are selected in this study due to their outstanding achievement during the past ten years in Hungary. In one school, data from the personal experiences of a school principal who initiated the bottom-up innovation are included. For the second school, three interviews were carried out with two schoolteachers and one secondary school student. In addition, desk research, including the principal’s published articles, the schoolteachers’ master thesis, the school websites, and other published articles, are analysed to explore the schools’ innovative processes. This study investigates how bottom-up innovation led to major achievements in student learning, teacher professional development, networking and collaboration with other schools, and the establishment of successful partnerships with universities. The highlight of this study is how innovative schools can be the major sources promoting educational innovations as well as improving teacher education, especially in initial teacher education and continuous professional development.Keywords: school innovation, teacher education, hungary, educational innovation, school improvement
Procedia PDF Downloads 10930440 Statistical Analysis of Natural Images after Applying ICA and ISA
Authors: Peyman Sheikholharam Mashhadi
Abstract:
Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images
Procedia PDF Downloads 33930439 Restructurasation of the Concept of Empire in the Social Consciousness of Modern Americans
Authors: Maxim Kravchenko
Abstract:
The paper looks into the structure and contents of the concept of empire in the social consciousness of modern Americans. To construct the model of this socially and politically relevant concept we have conducted an experiment with respondents born and living in the USA. Empire is seen as a historic notion describing such entities as the British empire, the Russian empire, the Ottoman empire and others. It seems that the democratic regime adopted by most countries worldwide is incompatible with imperial status of a country. Yet there are countries which tend to dominate in the contemporary world and though they are not routinely referred to as empires, in many respects they are reminiscent of historical empires. Thus, the central hypothesis of the study is that the concept of empire is cultivated in some states through the intermediary of the mass media though it undergoes a certain transformation to meet the expectations of a democratic society. The transformation implies that certain components which were historically embedded in its structure are drawn to the margins of the hierarchical structure of the concept whereas other components tend to become central to the concept. This process can be referred to as restructuration of the concept of empire. To verify this hypothesis we have conducted a study which falls into two stages. First we looked into the definition of empire featured in dictionaries, the dominant conceptual components of empire are: importance, territory/lands, recognition, independence, authority/power, supreme/absolute. However, the analysis of 100 articles from American newspapers chosen at random revealed that authors rarely use the word «empire» in its basic meaning (7%). More often «empire» is used when speaking about countries, which no longer exist or when speaking about some corporations (like Apple or Google). At the second stage of the study we conducted an associative experiment with the citizens of the USA aged 19 to 45. The purpose of the experiment was to find out the dominant components of the concept of empire and to construct the model of the transformed concept. The experiment stipulated that respondents should give the first association, which crosses their mind, on reading such stimulus phrases as “strong military”, “strong economy” and others. The list of stimuli features various words and phrases associated with empire including the words representing the dominant components of the concept of empire. Then the associations provided by the respondents were classified into thematic clusters. For instance, the associations to the stimulus “strong military” were compartmentalized into three groups: 1) a country with strong military forces (North Korea, the USA, Russia, China); 2) negative impression of strong military (war, anarchy, conflict); 3) positive impression of strong military (peace, safety, responsibility). The experiment findings suggest that the concept of empire is currently undergoing a transformation which brings about a number of changes. Among them predominance of positively assessed components of the concept; emergence of two poles in the structure of the concept, that is “hero” vs. “enemy”; marginalization of any negatively assessed components.Keywords: associative experiment, conceptual components, empire, restructurasation of the concept
Procedia PDF Downloads 31430438 Microfluidic Synthesis of Chlorophyll Extraction–Loaded PCL Composite Microparticles Developed as Health Food
Authors: Ching-Ju Hsiao, Mao-Chen Huang, Pei-Fan Chen, Ruo-Yun Chung, Jiun-Hua Chou, Chih-Hui Yang, Keng-Shiang Huang, Jei-Fu Shaw
Abstract:
Chlorophyll has many benefits for human body. It is known to improve the health of the circulatory, digestive, immune and detoxification systems of the body. However, Chl can’t be preserved at the environment of high temperature and light exposure for a long time due to it is chemical structure is easily degradable. This characteristic causes that human body is difficult to absorb Chl effective components. In order to solve this problem, we utilize polycaprolactone (PCL) polymer encapsulation technology to increase the stability of Chl. In particular, we also established a microfluidic platform provide the control of composite beads diameter. The new composite beads is potential to be a health food. Result show that Chl effective components via the microfludic platform can be encapsulated effectively and still preserve its effective components.Keywords: chlorophyll, PCL, PVA, microfluidic
Procedia PDF Downloads 55530437 E-Management and Firm Performance: An Empirical Study in Tunisian Firms
Authors: Khlif Hamadi
Abstract:
The principal aim of our research is to analyze the impact of the adoption of e-management approach on the performance of Tunisian firms. The method of structural equation was adopted to conduct our exploratory and confirmatory analysis. The results arising from the questionnaire sent to 155 E-managers affirm that the adoption of e-management approach influences the performance of Tunisian firms. The results of the questionnaire show that e-management favors the deployment of ICT usage and contributes enormously to the performance of the modern enterprise. The theoretical and practical implications of the study, as well as directions for future research, are discussed.Keywords: e-management, ICT Deployment, organizational performance, e-manager
Procedia PDF Downloads 34230436 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership
Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori
Abstract:
This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.Keywords: creativity, innovation, military, organization, teams
Procedia PDF Downloads 12330435 Retrospective Reconstruction of Time Series Data for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.Keywords: content analysis, factors, integrated waste management system, time series
Procedia PDF Downloads 32630434 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow
Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam
Abstract:
Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety
Procedia PDF Downloads 30230433 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 13430432 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri
Authors: Shishay Kidanu, Abdullah Alhaj
Abstract:
Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri
Procedia PDF Downloads 7430431 The Effectiveness of Mindfulness Education on Emotional, Psychological, and Social Well-Being in 12th Grade Students in Tehran City
Authors: Fariba Dortaj, H. Bashir Nejad, Akram Dortaj,
Abstract:
Investigate the Effectiveness of Mindfulness Education on Emotional, Psychological, and Social Well-being in 12th grade students in Tehran city is the aim of present study. The research method is semi-experimental with pretest-posttest design with control group. The statistical population of the study includes all 12th grade students of the 12th district of Tehran city in the academic year of 2017 to 2018. From the mentioned population, 60 students had earned low scores in three dimensions of Subjective Well-Being Questionnaire of Keyes and Magyar-Moe (2003) by using random sampling method and they were selected and randomly assigned into 2 experimental and control groups. Then experimental groups were received a Mindfulness protocol in 8 sessions during 2 hours. After completion of the sessions, all subjects were re-evaluated. Data were analyzed by using multivariate analysis of covariance. The findings of this study showed that in the emotional well-being aspect with the components of positive emotional affection (P < 0.025, F = 17/80) and negative emotions (P <0.025, F = 5/41), in the psychological well-being of the components Self-esteem (P < 0.008, F = 25.26), life goal (P < 0.008, F = 38.19), environmental domination (P <0.008, F=82.82), relationships with others (P < 0.008, F = 19.12), personal development with (P < 0.008, F = 87.38), and in the social well-being aspect, the correlation coefficients with (P<0.01, F=12/21), admission and acceptability with (P <0.01, F =18.09) and realism with (P <0.01, F = 11.30), there was a significant difference between the experimental and control groups and it can be said that the education of mindfulness affects the improvement of components of psychological, social and emotional well-being in students.Keywords: mindfulness, emotional well-being, psychological well-being, social well-being
Procedia PDF Downloads 17630430 Component Lifecycle and Concurrency Model in Usage Control (UCON) System
Authors: P. Ghann, J. Shiguang, C. Zhou
Abstract:
Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.Keywords: access control, concurrency, digital container, usage control
Procedia PDF Downloads 320