Search results for: feature selection feature subset selection feature extraction/transformation
6586 Folk Dance in Asterio Festivals in Ethiopia: Exploration of Performance, Variants, Symbols, and Therapeutic Role
Authors: Meseret Berhanie Menkir
Abstract:
The present study explores folk dance, one of the folklore texts, its symbols, and its therapeutic role. As a case, the study concentrates on Astrio-Mariam and Merkorios Bera, celebrated on January 30 and February 3 at Deresgie-Mariam Church in Ethiopia. By taking a qualitative stance, the study analyses the meaning of folk dance, explains its role, and describes its types. The data gathered through observation, interview, and focus group discussion techniques are documented in field notes, audio, and video. The data obtained is analyzed using structural-functionalism, psychoanalysis, and semiotics. Accordingly, community members of all ages (mainly the Ethiopian Orthodox Tewahedo Church followers) participate in the performance. While the folk dance is a type of small group dance and group dance, the group has no feature of using men and women performing together. The folk dance's role is a form of healing and spiritual fulfilment besides entertainment. The folk dance also has sword dance characteristics; the study confirmed this feature in content and form. Moreover, the folk dance characterized by frequent shoulder and hand movements Wancha likleka (Horn-mug spin), Doro metet (Chicken drink), and sword dance depict wealth, heroism, and warfare. The instruments used in the performances are also alive, with religious symbols reaching from the drum, incense, and cross to the suffering of Jesus Christ from Hanna to Qeyafa, and references to the 12 Apostles.Keywords: folk dance, festival, ritual, symbol, therapeutic
Procedia PDF Downloads 716585 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2536584 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 1446583 Visual Speech Perception of Arabic Emphatics
Authors: Maha Saliba Foster
Abstract:
Speech perception has been recognized as a bi-sensory process involving the auditory and visual channels. Compared to the auditory modality, the contribution of the visual signal to speech perception is not very well understood. Studying how the visual modality affects speech recognition can have pedagogical implications in second language learning, as well as clinical application in speech therapy. The current investigation explores the potential effect of speech visual cues on the perception of Arabic emphatics (AEs). The corpus consists of 36 minimal pairs each containing two contrasting consonants, an AE versus a non-emphatic (NE). Movies of four Lebanese speakers were edited to allow perceivers to have partial view of facial regions: lips only, lips-cheeks, lips-chin, lips-cheeks-chin, lips-cheeks-chin-neck. In the absence of any auditory information and relying solely on visual speech, perceivers were above chance at correctly identifying AEs or NEs across vowel contexts; moreover, the models were able to predict the probability of perceivers’ accuracy in identifying some of the COIs produced by certain speakers; additionally, results showed an overlap between the measurements selected by the computer and those selected by human perceivers. The lack of significant face effect on the perception of AEs seems to point to the lips, present in all of the videos, as the most important and often sufficient facial feature for emphasis recognition. Future investigations will aim at refining the analyses of visual cues used by perceivers by using Principal Component Analysis and including time evolution of facial feature measurements.Keywords: Arabic emphatics, machine learning, speech perception, visual speech perception
Procedia PDF Downloads 3076582 Decision Making Regarding Spouse Selection and Women's Autonomy in India: Exploring the Linkage
Authors: Nivedita Paul
Abstract:
The changing character of marriage be it arranged marriage, love marriage, polygamy, informal unions, all signify different gender relations in everyday lives. Marriages in India are part and parcel of the kinship and cultural practices. Arranged marriage is still the dominant form of marriage where spouse selection is the initiative and decision of the parents; but its form is changing, as women are now actively participating in spouse selection but with parental consent. Spouse selection related decision making is important because marriage as an institution brings social change and gender inequality; especially in a women’s life as marriages in India are mostly patrilocal. Moreover, the amount of say in spouse selection can affect a woman’s reproductive rights, domestic violence issues, household resource allocation, communication possibilities with the spouse/husband, marital life, etc. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently, married women of age group 15-49 in their first marriage; whose year of marriage is from 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self arranged or love marriage is the sole decision maker in choosing the partner, in semi arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to find the relationship between spouse selection experiences and women’s autonomy in India. Decision making in economic matters, child and health related decision making, mobility and access to resources are taken to be proxies of autonomy. Method of ordinal regression has been used to find the relationship between spouse selection experiences and autonomy after marriage keeping other independent variables as control factors. Results show that women in semi arranged marriage have more decision making power regarding financial matters of the household, health related matters, mobility and accessibility to resources, when compared to women in family, arranged marriages. For freedom of movement and access to resources women in self arranged marriage have the highest say or exercise greatest power. Therefore, greater participation of women (even though not absolute control) in spouse selection may lead to greater autonomy after marriage.Keywords: arranged marriage, autonomy, consent, spouse selection
Procedia PDF Downloads 1486581 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric
Authors: Geetika Barman, B. S. Daya Sagar
Abstract:
In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology
Procedia PDF Downloads 886580 An Empirical Investigation of Factors Influencing Construction Project Selection Processes within the Nigeria Public Sector
Authors: Emmanuel U. Unuafe, Oyegoke T. Bukoye, Sandhya Sastry, Yanqing Duan
Abstract:
Globally, there is increasing interest in project management due to a shortage in infrastructure services supply capability. Hence, it is of utmost importance that organisations understand that choosing a particular project over another is an opportunity cost – tying up the organisations resources. In order to devise constructive ways to bring direction, structure, and oversight to the process of project selection has led to the development of tools and techniques by researchers and practitioners. However, despite the development of various frameworks to assist in the appraisal and selection of government projects, failures are still being recorded with government projects. In developing countries, where frameworks are rarely used, the problems are compounded. To improve the situation, this study will investigate the current practice of construction project selection processes within the Nigeria public sector in order to inform theories of decision making from the perspective of developing nations and project management practice. Unlike other research around construction projects in Nigeria this research concentrate on factors influencing the selection process within the Nigeria public sector, which has received limited study. The authors report the findings of semi-structured interviews of top management in the Nigerian public sector and draw conclusions in terms of decision making extant theory and current practice. Preliminary results from the data analysis show that groups make project selection decisions and this forces sub-optimal decisions due to pressure on time, clashes of interest, lack of standardised framework for selecting projects, lack of accountability and poor leadership. Consequently, because decision maker is usually drawn from different fields, religious beliefs, ethnic group and with different languages. The choice of a project by an individual will be greatly influence by experience, political precedence than by realistic investigation as well as his understanding of the desired outcome of the project, in other words, the individual’s ideology and their level of fairness.Keywords: factors influencing project selection, public sector construction project selection, projects portfolio selection, strategic decision-making
Procedia PDF Downloads 3316579 Muhammad`s Vision of Interaction with Supernatural Beings According to the Hadith in Comparison to Parallels of Other Cultures
Authors: Vladimir A. Rozov
Abstract:
Comparative studies of religion and ritual could contribute better understanding of human culture universalities. Belief in supernatural beings seems to be a common feature of the religion. A significant part of the Islamic concepts that concern supernatural beings is based on a tradition based on the Hadiths. They reflect, among other things, his ideas about a proper way to interact with supernatural beings. These ideas to a large extent follow from the pre-Islamic religious experience of the Arabs and had been reflected in a number of ritual actions. Some of those beliefs concern a particular function of clothing. For example, it is known that Muhammad was wrapped in clothes during the revelation of the Quran. The same thing was performed by pre-Islamic soothsayers (kāhin) and by rival opponents of Muhammad during their trances. Muhammad also turned the clothes inside out during religious rituals (prayer for rain). Besides these specific ways of clothing which prove the external similarity of Muhammad with the soothsayers and other people who claimed the connection with supernatural forces, the pre-Islamic soothsayers had another characteristic feature which is physical flaws. In this regard, it is worth to note Muhammad's so-called "Seal the Prophecy" (h̠ ātam an- nubūwwa) -protrusion or outgrowth on his back. Another interesting feature of Muhammad's behavior was his attitude to eating onion and garlic. In particular, the Prophet didn`t eat them and forbade people who had tasted these vegetables to enter mosques, until the smell ceases to be felt. The reason for this ban on eating onion and garlic is caused by a belief that the smell of these products prevents communication with otherworldly forces. The materials of the Hadith also suggest that Muhammad shared faith in the apotropical properties of water. Both of these ideas have parallels in other cultures of the world. Muhammad's actions supposed to provide an interaction with the supernatural beings are not accidental. They have parallels in the culture of pre-Islamic Arabia as well as in many past and present world cultures. The latter fact can be explained by the similarity of the universal human beliefs in supernatural beings and how they should be interacted with. Later a number of similar ideas shared by the Prophet Muhammad was legitimized by the Islamic tradition and formed the basis of popular Islamic rituals. Thus, these parallels emphasize the commonality of human notions of supernatural beings and also demonstrate the significance of the pre-Islamic cultural context in analyzing the genesis of Islamic religious beliefs.Keywords: hadith, Prophet Muhammad, ritual, supernatural beings
Procedia PDF Downloads 3896578 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 876577 Portfolio Selection with Constraints on Trading Frequency
Authors: Min Dai, Hong Liu, Shuaijie Qian
Abstract:
We study a portfolio selection problem of an investor who faces constraints on rebalancing frequency, which is common in pension fund investment. We formulate it as a multiple optimal stopping problem and utilize the dynamic programming principle. By numerically solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation, we find a series of free boundaries characterizing optimal strategy, and the constraints significantly impact the optimal strategy. Even in the absence of transaction costs, there is a no-trading region, depending on the number of the remaining trading chances. We also find that the equivalent wealth loss caused by the constraints is large. In conclusion, our model clarifies the impact of the constraints on transaction frequency on the optimal strategy.Keywords: portfolio selection, rebalancing frequency, optimal strategy, free boundary, optimal stopping
Procedia PDF Downloads 886576 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1906575 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3466574 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database
Procedia PDF Downloads 2346573 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 766572 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 3396571 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing
Procedia PDF Downloads 3206570 A Conceptual Analysis of Right of Taxpayers to Claim Refund in Nigeria
Authors: Hafsat Iyabo Sa'adu
Abstract:
A salient feature of the Nigerian Tax Law is the right of the taxpayer to demand for a refund where excess tax is paid. Section 23 of the Federal Inland Revenue Service (Establishment) Act, 2007 vests Federal Inland Revenue Services with the power to make tax refund as well as set guidelines and requirements for refund process from time to time. In addition, Section 61 of the Federal Inland Revenue Service (Establishment) Act, 2007, empowers the Federal Inland Revenue Services to issue information circular to acquaint stakeholders with the policy on the refund process. A Circular was issued to that effect to correct the position that until after the annual audit of the Service before such excess can be paid to the claimant/taxpayer. But it is amazing that such circular issuance does not feature under the states’ laws. Hence, there is an inconsistencies in the tax paying system in Nigeria. This study, therefore, sets an objective, to examine the trending concept of tax refund in Nigeria. In order to achieve this set objective, a doctrinal study went under way, wherein both federal and states laws were consulted including journals and textbooks. At the end of the research, it was revealed that the law should be specific as to the time frame within which to make the refund. It further revealed that it is essential to put up a legal framework for the tax system to recognize excess payment as debt due from the state. This would provide a foundational framework for the relationship between taxpayers and Federal Inland Revenue Service as well as promote effective tax administration in all the states of the federation. Several Recommendations were made especially relating to legislative passage of ‘’Refund Circular Bill at the states levels’ pursuant to the Federal Inland Revenue Service (Establishment) Act, 2007.Keywords: claim, Nigeria, refund, right
Procedia PDF Downloads 1196569 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1696568 Usability Evaluation in Practice: Selecting the Appropriate Method
Authors: Hanan Hayat, Russell Lock
Abstract:
The importance of usability in ensuring software quality has been well established in literature and widely accepted by software development practitioners. Consequently, numerous usability evaluation methods have been developed. However, the availability of large variety of evaluation methods alongside insufficient studies that critically analyse them resulted in an ambiguous process of selection amongst non-usability-expert practitioners. This study investigates the factors affecting the selection of usability evaluation methods within a project by interviewing a software development team. The results of the data gathered are then analysed and integrated in developing a framework. The framework developed poses a solution to the selection processes of usability evaluation methods by adjusting to individual projects resources and goals. It has the potential to be further evaluated to verify its applicability and usability within the domain of this study.Keywords: usability evaluation, evaluating usability in non-user entered designs, usability evaluation methods (UEM), usability evaluation in projects
Procedia PDF Downloads 1616567 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5706566 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 1296565 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 2366564 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region
Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar
Abstract:
Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification
Procedia PDF Downloads 1876563 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data
Authors: Fanqiang Kong, Chending Bian
Abstract:
Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means
Procedia PDF Downloads 2486562 Clothing and Personnel Selection: An Experimental Study to Test the Effects of Dress Style on Hirability Perceptions
Authors: Janneke K. Oostrom, Richard Ronay
Abstract:
The so called “red sneakers effect” refers to people’s inclination to infer status and competence from signals of nonconformity. In the current research, we explore an untested possible boundary condition to the red sneakers effect within the context of personnel selection. In two experimental studies (total N = 156), we examined how (non)conforming dress style interacts with the quality of a job applicant’s resume to determine hirability perceptions. We found that dress style indeed impacts hirability perceptions, but that the exact impact depends on the quality of the applicant’s resume. Results revealed that applicants with a low quality resume were punished for behaving in a nonconforming way, whereas applicants with a high quality resume appeared to have the leeway to dress as they please. Importantly, the observed interaction effect was mediated by perceptions of power. These findings suggest that nonconforming dress acts as a power-signaling mechanism in the context of personnel selection. However, the signaling effects of non-conforming dress style can backfire when accompanied by evidence that such posturing is not matched by cues of actual competence.Keywords: clothing, hirability, nonconformity, personnel selection, power
Procedia PDF Downloads 1786561 Nest-Site Selection of Crested Lark (Galerida cristata) in Yazd Province, Iran
Authors: Shirin Aghanajafizadeh
Abstract:
Nest site selection of Crested Lark was investigated in Boroyeh wildlife sanctuary of Harat during spring 2014. Habitat variables such as number of plant species, soil texture, distance to the nearest water resources, farms and roads were compared in the species presence plots with absence ones. Our analysis showed that the average number of Zygophyllum atriplicoidesand, Artemisia sieberi were higher while fine-textured soil percent cover (with very little and gravel) was lower in species presence plots than control plots. We resulted that the most affecting factor in the species nest site selection is the number of Z .atriplicoides and soil texture. Z. atriplicoides and A. sieberi can provide cover for nests and chickens against predators and environmental harsh events such as sunshine and wind. The stability of built nest forces the birds to select sites with not fine-textured soil. Some of the nests were detected in Alfalfa farms that can be related to its cover producing capability.Keywords: habitat selection, Yazd Province, presence and absence plots, habitat variables
Procedia PDF Downloads 1866560 Vendor Selection and Supply Quotas Determination by Using Revised Weighting Method and Multi-Objective Programming Methods
Authors: Tunjo Perič, Marin Fatović
Abstract:
In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology is tested on the example of flour purchase for a bakery with two decision makers.Keywords: cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection
Procedia PDF Downloads 3596559 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 1586558 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 916557 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods
Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen
Abstract:
Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.Keywords: accommodation establishments, human resource management, multi-objective optimization on the basis of ratio analysis, multi-criteria decision making, step-wise weight assessment ratio analysis
Procedia PDF Downloads 344