Search results for: clustering ensemble
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 791

Search results for: clustering ensemble

251 Perceived Causes of Mathematics Phobia Amongst Senior Secondary School Students in Yenagoa Metropolis, Bayelsa State, Nigeria

Authors: Iniye Irene Wodi, Kennedy B. Gibson

Abstract:

Students’ poor performance in mathematics in both internal and external examinations has been a source of concern to researchers in Nigeria. The cause of this has been attributed to both teachers and students. To this end, this study sought to find out students’ perceptions of teachers’ attributes as a cause of mathematics phobia among secondary school students in Bayelsa State Nigeria. The population of the study comprised of all students of senior secondary schools in Yenagoa metropolis. A sample of 120 students was drawn from this population using clustering and simple random sampling techniques. The instrument for data collection was a researcher constructed questionnaire titled Mathematics Phobia Questionnaire (MPQ). Data were analysed, and the results revealed that students perceived teachers’ attributes such as methods and styles of teaching, difficulty in communication, etc. as causes of mathematics phobia among students in senior secondary schools in Bayelsa State. Based on the result, it was therefore recommended that mathematics teachers should be retrained periodically in order to learn new and innovative ways of teaching mathematics to prevent its phobia among students.

Keywords: mathematics phobia, teacher attributes, teaching method, teaching style

Procedia PDF Downloads 112
250 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 524
249 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation

Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell

Abstract:

Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.

Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models

Procedia PDF Downloads 146
248 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization

Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen

Abstract:

This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.

Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization

Procedia PDF Downloads 248
247 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 257
246 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern

Procedia PDF Downloads 182
245 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 467
244 Emotional Skills and Musical Performance in the Elementary Music Education in Conservatoires: An Exploratory Study

Authors: Emilia A. Campayo-Munoz, Alberto Cabedo-Mas

Abstract:

Music students have to face the challenges of musical practice -such as discipline in study, competitiveness, or performance anxiety- that require good emotional management to enable successful performance. However, few rigorous implementations focused on studying the influence of emotional skills in student's musical performance. Responding to this gap in the literature, this study aims to explore the relationship between emotional skills and musical performance in the context of elementary music education in conservatoires. Given the individual nature of the instrumental studies and the difficult availability of teachers to be trained in emotional education, it was decided to conduct a multiple case study in a Spanish music conservatoire. Author 1 carried out the implementation of the research with three 10-year-old students who were selected from her piano class. All of them attended the third year of their piano studies. The research processes consisted of the implementation of a set of specific and cross-sectional activities designed 'ad hoc' to be articulated in the subjects of individual instrument -piano- and ensemble in parallel to the contents of musical nature. The CE-360º questionnaire was used to measure different aspects of the students' emotional skills from a multi-angle perspective, each of the questionnaires being responded by oneself, three teachers and three peers, before and after the implementation. The data from the questionnaire were compared with the grades that the students obtained during the first and last quarter of the school year in the attended subjects. Acknowledging the complexity of emotional development, the results indicate possible relations between emotional skills and musical performance in music education in conservatoires. The results show that for the cases explored; there exists a relationship between emotional skills and musical performance. Although generalizations cannot be made, this study reinforces the need to further explore emotional development in instrumental teaching and suggest the importance of inviting teachers to reflect on the pedagogical practices extended in the conservatoires and to develop and implement those that promote the work of the students' emotions.

Keywords: conservatoires, emotional skills, music education, musical performance

Procedia PDF Downloads 244
243 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 543
242 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 336
241 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 116
240 The Study of Using Mon Dance in Pathum Thani Province’s Tradition

Authors: Dusittorn Ngamying

Abstract:

This investigation of Mon Dance is focused on using in Pathum Thani Province’s tradition and has the following objectives: 1) to study the background of Mon dance in Pathum Thani Province; 2) to study Mon dance in Pathum Thani Province; 3) to study of using Mon Dance in Pathum Thani province’s tradition. This qualitative research was conducted in Pathum Thani provinces (the central of Thailand). Data was collected from a documentary study and field data by means of observation, interview and group discussion. Workshops were also held with a total of 100 attendees, comprised of 20 key informants, 40 casual informants and 40 general informants. Data was validated using a triangulation technique and findings are presented using descriptive analysis. The results of the studied showed that the historical background of Mon dance in Pathum Thani Province initiated during the war evacuation from Martaban (south of Burma) to settle down in Sam Khok, Pathum Thani Province in Ayutthaya period to Rattanakosin. The study found that Mon dance typically consists of 12 dancing process. The melodies have 12 songs. Piphat Mon (Mon traditional music ensemble) was used in the performance. The costume was dressed on Mon traditional. The performers were 6-12 women and depending on the employer’s demands. Length of the performance varied from the duration of music orchestration. Rituals and Customs were paying homage to teachers before the performance. The offerings were composed of flowers, incense sticks, candles, money gifts which were well arranged on a tray with pedestal, and also liquors, tobaccos and pure water for asking propitiousness. To using Mon Dance in Pathum Thani Province’s tradition, was found that it commonly performed in the funeral ceremonial tradition at present because the physical postures of the performance were graceful and exquisite as approved conservative. In addition, the value since the ancient time had believed that Mon Dance was the sacred thing considered as the dignity glorification especially for funeral ceremonies of the priest or royal hierarchy classes. However, Mon dance was continued to use in the traditions associated with Mon people activities in Pathum Thani Province, for instance, customary welcome for honor guest and Songkran Festival.

Keywords: Mon dance, Pathum Tani Province, tradition, triangulation technique

Procedia PDF Downloads 592
239 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
238 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
237 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium

Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda

Abstract:

Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.

Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium

Procedia PDF Downloads 95
236 Portfolio Selection with Active Risk Monitoring

Authors: Marc S. Paolella, Pawel Polak

Abstract:

The paper proposes a framework for large-scale portfolio optimization which accounts for all the major stylized facts of multivariate financial returns, including volatility clustering, dynamics in the dependency structure, asymmetry, heavy tails, and non-ellipticity. It introduces a so-called risk fear portfolio strategy which combines portfolio optimization with active risk monitoring. The former selects optimal portfolio weights. The latter, independently, initiates market exit in case of excessive risks. The strategy agrees with the stylized fact of stock market major sell-offs during the initial stage of market downturns. The advantages of the new framework are illustrated with an extensive empirical study. It leads to superior multivariate density and Value-at-Risk forecasting, and better portfolio performance. The proposed risk fear portfolio strategy outperforms various competing types of optimal portfolios, even in the presence of conservative transaction costs and frequent rebalancing. The risk monitoring of the optimal portfolio can serve as an early warning system against large market risks. In particular, the new strategy avoids all the losses during the 2008 financial crisis, and it profits from the subsequent market recovery.

Keywords: comfort, financial crises, portfolio optimization, risk monitoring

Procedia PDF Downloads 525
235 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies

Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio

Abstract:

Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.

Keywords: catalysis, CCU, CO₂, multi-scale model

Procedia PDF Downloads 253
234 Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study

Authors: Kaiying Lai, Suiping Wang, Luodi Yu, Yang Zhang, Pengmin Qin

Abstract:

Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD.

Keywords: ASD, sensory profile, pitch processing, mismatch negativity, MMN

Procedia PDF Downloads 391
233 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180
232 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
231 Modelling Impacts of Global Financial Crises on Stock Volatility of Nigeria Banks

Authors: Maruf Ariyo Raheem, Patrick Oseloka Ezepue

Abstract:

This research aimed at determining most appropriate heteroskedastic model to predicting volatility of 10 major Nigerian banks: Access, United Bank for Africa (UBA), Guaranty Trust, Skye, Diamond, Fidelity, Sterling, Union, ETI and Zenith banks using daily closing stock prices of each of the banks from 2004 to 2014. The models employed include ARCH (1), GARCH (1, 1), EGARCH (1, 1) and TARCH (1, 1). The results show that all the banks returns are highly leptokurtic, significantly skewed and thus non-normal across the four periods except for Fidelity bank during financial crises; findings similar to those of other global markets. There is also strong evidence for the presence of heteroscedasticity, and that volatility persistence during crisis is higher than before the crisis across the 10 banks, with that of UBA taking the lead, about 11 times higher during the crisis. Findings further revealed that Asymmetric GARCH models became dominant especially during financial crises and post crises when the second reforms were introduced into the banking industry by the Central Bank of Nigeria (CBN). Generally, one could say that Nigerian banks returns are volatility persistent during and after the crises, and characterised by leverage effects of negative and positive shocks during these periods

Keywords: global financial crisis, leverage effect, persistence, volatility clustering

Procedia PDF Downloads 526
230 Volatility and Stylized Facts

Authors: Kalai Lamia, Jilani Faouzi

Abstract:

Measuring and controlling risk is one of the most attractive issues in finance. With the persistence of uncontrolled and erratic stocks movements, volatility is perceived as a barometer of daily fluctuations. An objective measure of this variable seems then needed to control risks and cover those that are considered the most important. Non-linear autoregressive modeling is our first evaluation approach. In particular, we test the presence of “persistence” of conditional variance and the presence of a degree of a leverage effect. In order to resolve for the problem of “asymmetry” in volatility, the retained specifications point to the importance of stocks reactions in response to news. Effects of shocks on volatility highlight also the need to study the “long term” behaviour of conditional variance of stocks returns and articulate the presence of long memory and dependence of time series in the long run. We note that the integrated fractional autoregressive model allows for representing time series that show long-term conditional variance thanks to fractional integration parameters. In order to stop at the dynamics that manage time series, a comparative study of the results of the different models will allow for better understanding volatility structure over the Tunisia stock market, with the aim of accurately predicting fluctuation risks.

Keywords: asymmetry volatility, clustering, stylised facts, leverage effect

Procedia PDF Downloads 299
229 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 170
228 Estimating Precipitable Water Vapour Using the Global Positioning System and Radio Occultation over Ethiopian Regions

Authors: Asmamaw Yehun, Tsegaye Gogie, Martin Vermeer, Addisu Hunegnaw

Abstract:

The Global Positioning System (GPS) is a space-based radio positioning system, which is capable of providing continuous position, velocity, and time information to users anywhere on or near the surface of the Earth. The main objective of this work was to estimate the integrated precipitable water vapour (IPWV) using ground GPS and Low Earth Orbit (LEO) Radio Occultation (RO) to study spatial-temporal variability. For LEO-GPS RO, we used Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) datasets. We estimated the daily and monthly mean of IPWV using six selected ground-based GPS stations over a period of range from 2012 to 2016 (i.e. five-years period). The main perspective for selecting the range period from 2012 to 2016 is that, continuous data were available during these periods at all Ethiopian GPS stations. We studied temporal, seasonal, diurnal, and vertical variations of precipitable water vapour using GPS observables extracted from the precise geodetic GAMIT-GLOBK software package. Finally, we determined the cross-correlation of our GPS-derived IPWV values with those of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Interim reanalysis and of the second generation National Oceanic and Atmospheric Administration (NOAA) model ensemble Forecast System Reforecast (GEFS/R) for validation and static comparison. There are higher values of the IPWV range from 30 to 37.5 millimetres (mm) in Gambela and Southern Regions of Ethiopia. Some parts of Tigray, Amhara, and Oromia regions had low IPWV ranges from 8.62 to 15.27 mm. The correlation coefficient between GPS-derived IPWV with ECMWF and GEFS/R exceeds 90%. We conclude that there are highly temporal, seasonal, diurnal, and vertical variations of precipitable water vapour in the study area.

Keywords: GNSS, radio occultation, atmosphere, precipitable water vapour

Procedia PDF Downloads 86
227 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
226 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
225 Molecular Detection and Isolation of Benzimidazole Resistant Haemonchus contortus from Pakistan

Authors: K. Ali, M. F. Qamar, M. A. Zaman, M. Younus, I. Khan, S. Ehtisham-ul-Haque, R. Tamkeen, M. I. Rashid, Q. Ali

Abstract:

This study centers on molecular identification of Haemonchus contortus and isolation of Benz-imidazoles (BZ) resistant strains. Different abattoirs’ of two geographic regions of Punjab (Pakistan) were frequently visited for the collection of worms. Out of 1500 (n=1500) samples that were morphologically confirmed as H. contortus, 30 worms were subjected to molecular procedures for isolation of resistant strains. Resistant worms (n=8) were further subjected to DNA gene sequencing. Bio edit sequence alignment editor software was used to detect the possible mutation, deletion, replacement of nucleotides. Genetic diversity was noticed and genetic variation existing in β-tubulin isotype 1 of the H. contortus population of small ruminants of different regions considered in this study. H. contortus showed three different type of genetic sequences. 75%, 37.5%, 25% and 12.5% of the studied samples showed 100% query cover and identity with isolates and clones of China, UK, Australia and other countries, respectively. Interestingly the neighbor countries such as India and Iran haven’t many similarities with the Pakistani isolates. Thus, it suggests that population density of same genetic makeup H. contortus is scattered worldwide rather than clustering in a single region.

Keywords: Haemonchus contortus, Benzimidazole resistant, β-tubulin-1 gene, abattoirs

Procedia PDF Downloads 175
224 Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China

Authors: Ke Yang, QiHan, Bauke de Veirs

Abstract:

This study addresses the need for coordinated management of natural resources in urban agglomeration. Using ecosystem services theory, The study explore the relationship between land use in the Beijing-Tianjin-Hebei (B-T-H) region and the Food-Water-Energy (F-W-E) nexus from 2000 to 2030. We assess ecosystem services using the InVEST: Habitat Quality (HQ), Water Yield (WY), Carbon Sequestration (CS), Soil Retention (SDR), and Food Production (FP). The study find an annual expansion of construction land alongside a significant decline in cultivated land. Additionally, HQ, CS, and per capita FP decline annually until 2020 and are expected to persist through 2030. In contrast, WY and SDR grow annually but may decline by 2030. Spearman coefficient analysis reveals synergies between HQ and CS, SDR and CS, and SDR and HQ, with trade-offs between CS and WY and HQ and WY. Utilizing the K-means clustering analysis method, we introduce county-based spatial planning for the F-W-E system, offering valuable insights and recommendations for sustainable resource management.

Keywords: food-water-energy (F-W-E), ecosystem services, trade-offs and synergies, ecosystem service bundle, county-based

Procedia PDF Downloads 62
223 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
222 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 151