Search results for: Fraudulent pattern recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4125

Search results for: Fraudulent pattern recognition

3585 Prevalence and Pattern of Drug Usage among Youth in Ogbomoso, Nigeria

Authors: Samson F. Agberotimi, Rachel B. Asagba, Choja Oduaran

Abstract:

Disturbing rate of use of different substances such as cannabis, alcohol, as well as pharmaceutical drugs among Nigerian youth in recent times has been affirmed in the literature. There is, however, a paucity of literature addressing the pattern of usage of such drugs, especially for clinical relevance and intervention planning. The present study investigated the prevalence and pattern of drug usage among youth in Ogbomoso, Nigeria. A cross-sectional survey involving 92 purposively selected participants comprising of 82 males and 10 females aged between 15 and 24 years was conducted. A measure of drug involvement and demographic characteristics was administered to the participants. Descriptive analysis was done using the SPSS v.21. Cannabis (79.4%), alcohol (77.2%), codeine (70.7%), tobacco (65.2%) and tramadol (47.8%) are the five most frequently used substances. However, the majority of the users of tobacco (68.3%) and alcohol (62.0%) are casual users indicating a mild level of use of the substances among the participants. On the other hand, 49.2% of the codeine users, 27.3% of the tramadol users, and 21.9% of the cannabis users reported harmful/intensive levels of use. Furthermore, the results revealed individuals at the pathological level of use as 28.8% for cannabis, 25.0% for tramadol, and 21.6% for codeine, and thus require clinical/therapeutic intervention. In conclusion, cannabis remains the most frequently used substance among youths. However, there appears to be a shift from the use of conventional psychoactive substances to pharmaceutical/prescription drugs such as codeine and tramadol. The findings of this study raised the need for both preventive and therapeutic interventions addressing the problem of substance use disorder among youth in contemporary society.

Keywords: Ogbomoso, pattern of drug use, prevalence of drug use, youth

Procedia PDF Downloads 170
3584 Towards Islamic Sustainable Consumption: Micro Evidence from Muslim Household in Malaysia

Authors: Noorhaslinda Kulub Abd. Rashid, Zuraini Anang, Bayu Taufiq Possumah, Suriyani Muhamad, Fauziah Abu Hasan, Hairunnizam Wahid

Abstract:

Reality of Malaysian lives today, especially the households, are not exempted from using a variety of good products and services that are particularly materialistic. In fact, the pace and sophistication of the technology is seen as a major catalyst to the pattern of community life. In facing the challenges of the current economy, the key role to be played by household is managing the pattern of expenditure, income and loan debts regularly and blessed by Allah. Unfortunately, the world today is witnessing the average household could owe solely to meet their needs with existing spending limits. This study aims to measure the ‘Religious Index of Household Expenditure’ (IKM) and analyze how far the religious influence to the pattern of household expenditure based on the 441 Muslim households. The results showed only a 5-item spending, food, housing, transportation, education, and recreation and entertainment that has a significant relationship with IKM. Therefore, Islamic consumer education is a must to establish sustainable consumptions in order to speed up the internalization of sustainable lifestyle among Malaysians.

Keywords: ‘Religious Index of Household Expenditure’ (IKM), income, sustainable consumptions, household expenditure

Procedia PDF Downloads 235
3583 Development of a Data Security Model Using Steganography

Authors: Terungwa Simon Yange, Agana Moses A.

Abstract:

This paper studied steganography and designed a simplistic approach to a steganographic tool for hiding information in image files with the view of addressing the security challenges with data by hiding data from unauthorized users to improve its security. The Structured Systems Analysis and Design Method (SSADM) was used in this work. The system was developed using Java Development Kit (JDK) 1.7.0_10 and MySQL Server as its backend. The system was tested with some hypothetical health records which proved the possibility of protecting data from unauthorized users by making it secret so that its existence cannot be easily recognized by fraudulent users. It further strengthens the confidentiality of patient records kept by medical practitioners in the health setting. In conclusion, this work was able to produce a user friendly steganography software that is very fast to install and easy to operate to ensure privacy and secrecy of sensitive data. It also produced an exact copy of the original image and the one carrying the secret message when compared with each.

Keywords: steganography, cryptography, encryption, decryption, secrecy

Procedia PDF Downloads 267
3582 Patient-Friendly Hand Gesture Recognition Using AI

Authors: K. Prabhu, K. Dinesh, M. Ranjani, M. Suhitha

Abstract:

During the tough times of covid, those people who were hospitalized found it difficult to always convey what they wanted to or needed to the attendee. Sometimes the attendees might also not be there. In that case, the patients can use simple hand gestures to control electrical appliances (like its set it for a zero watts bulb)and three other gestures for voice note intimation. In this AI-based hand recognition project, NodeMCU is used for the control action of the relay, and it is connected to the firebase for storing the value in the cloud and is interfaced with the python code via raspberry pi. For three hand gestures, a voice clip is added for intimation to the attendee. This is done with the help of Google’s text to speech and the inbuilt audio file option in the raspberry pi 4. All the five gestures will be detected when shown with their hands via the webcam, which is placed for gesture detection. The personal computer is used for displaying the gestures and for running the code in the raspberry pi imager.

Keywords: nodeMCU, AI technology, gesture, patient

Procedia PDF Downloads 168
3581 Real-Time Finger Tracking: Evaluating YOLOv8 and MediaPipe for Enhanced HCI

Authors: Zahra Alipour, Amirreza Moheb Afzali

Abstract:

In the field of human-computer interaction (HCI), hand gestures play a crucial role in facilitating communication by expressing emotions and intentions. The precise tracking of the index finger and the estimation of joint positions are essential for developing effective gesture recognition systems. However, various challenges, such as anatomical variations, occlusions, and environmental influences, hinder optimal functionality. This study investigates the performance of the YOLOv8m model for hand detection using the EgoHands dataset, which comprises diverse hand gesture images captured in various environments. Over three training processes, the model demonstrated significant improvements in precision (from 88.8% to 96.1%) and recall (from 83.5% to 93.5%), achieving a mean average precision (mAP) of 97.3% at an IoU threshold of 0.7. We also compared YOLOv8m with MediaPipe and an integrated YOLOv8 + MediaPipe approach. The combined method outperformed the individual models, achieving an accuracy of 99% and a recall of 99%. These findings underscore the benefits of model integration in enhancing gesture recognition accuracy and localization for real-time applications. The results suggest promising avenues for future research in HCI, particularly in augmented reality and assistive technologies, where improved gesture recognition can significantly enhance user experience.

Keywords: YOLOv8, mediapipe, finger tracking, joint estimation, human-computer interaction (HCI)

Procedia PDF Downloads 13
3580 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 373
3579 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 515
3578 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform

Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar

Abstract:

It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.

Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)

Procedia PDF Downloads 581
3577 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: training, rehabilitation, SCI patient, welfare, robot

Procedia PDF Downloads 428
3576 Spatial Planning Model on Landslide Risk Disaster at West Java Geothermal Field, Indonesia

Authors: Herawanti Kumalasari, Raldi Hendro Koestoer, Hayati Sari Hasibuan

Abstract:

Geographically, Indonesia is located in the arc of volcanoes that cause disaster prone one of them is landslide disaster. One of the causes of the landslide is the conversion of land from forest to agricultural land in upland areas and river border that has a steep slope. The study area is located in the highlands with fertile soil conditions, so most of the land is used as agricultural land and plantations. Land use transfer also occurs around the geothermal field in Pangalengan District, West Java Province which will threaten the sustainability of geothermal energy utilization and the safety of the community. The purpose of this research is to arrange the concept of spatial pattern arrangement in the geothermal area based on disaster mitigation. This research method using superimpose analysis. Superimpose analysis to know the basic physical condition of the planned area through the overlay of disaster risk map with the map of the plan of spatial plan pattern of Bandung Regency Spatial Plan. The results of the analysis will then be analyzed spatially. The results have shown that most of the study areas were at moderate risk level. Planning of spatial pattern of existing study area has not fully considering the spread of disaster risk that there are settlement area and the agricultural area which is in high landslide risk area. The concept of the arrangement of the spatial pattern of the study area will use zoning system which is divided into three zones namely core zone, buffer zone and development zone.

Keywords: spatial planning, geothermal, disaster risk, zoning

Procedia PDF Downloads 274
3575 Untangling the Greek Seafood Market: Authentication of Crustacean Products Using DNA-Barcoding Methodologies

Authors: Z. Giagkazoglou, D. Loukovitis, C. Gubili, A. Imsiridou

Abstract:

Along with the increase in human population, demand for seafood has increased. Despite the strict labeling regulations that exist for most marketed species in the European Union, seafood substitution remains a persistent global issue. Food fraud occurs when food products are traded in a false or misleading way. Mislabeling occurs when one species is substituted and traded under the name of another, and it can be intentional or unintentional. Crustaceans are one of the most regularly consumed seafood in Greece. Shrimps, prawns, lobsters, crayfish, and crabs are considered a delicacy and can be encountered in a variety of market presentations (fresh, frozen, pre-cooked, peeled, etc.). With most of the external traits removed, products as such are susceptible to species substitution. DNA barcoding has proven to be the most accurate method for the detection of fraudulent seafood products. To our best knowledge, the DNA barcoding methodology is used for the first time in Greece, in order to investigate the labeling practices for crustacean products available in the market. A total of 100 tissue samples were collected from various retailers and markets across four Greek cities. In an effort to cover the highest range of products possible, different market presentations were targeted (fresh, frozen and cooked). Genomic DNA was extracted using the DNeasy Blood & Tissue Kit, according to the manufacturer's instructions. The mitochondrial gene selected as the target region of the analysis was the cytochrome c oxidase subunit I (COI). PCR products were purified and sequenced using an ABI 3500 Genetic Analyzer. Sequences were manually checked and edited using BioEdit software and compared against the ones available in GenBank and BOLD databases. Statistical analyses were conducted in R and PAST software. For most samples, COI amplification was successful, and species-level identification was possible. The preliminary results estimate moderate mislabeling rates (25%) in the identified samples. Mislabeling was most commonly detected in fresh products, with 50% of the samples in this category labeled incorrectly. Overall, the mislabeling rates detected by our study probably relate to some degree of unintentional misidentification, and lack of knowledge surrounding the legal designations by both retailers and consumers. For some species of crustaceans (i.e. Squila mantis) the mislabeling appears to be also affected by the local labeling practices. Across Greece, S. mantis is sold in the market under two common names, but only one is recognized by the country's legislation, and therefore any mislabeling is probably not profit-motivated. However, the substitution of the speckled shrimp (Metapenaus monoceros) for the distinct, giant river prawn (Macrobranchium rosenbergii), is a clear example of deliberate fraudulent substitution, aiming for profit. To our best knowledge, no scientific study investigating substitution and mislabeling rates in crustaceans has been conducted in Greece. For a better understanding of Greece's seafood market, similar DNA barcoding studies in other regions with increased touristic importance (e.g., the Greek islands) should be conducted. Regardless, the expansion of the list of species-specific designations for crustaceans in the country is advised.

Keywords: COI gene, food fraud, labelling control, molecular identification

Procedia PDF Downloads 68
3574 Effect of Climate Changing Pattern on Aquatic Biodiversity of Bhimtal Lake at Kumaun Himalaya (India)

Authors: Davendra S. Malik

Abstract:

Bhimtal lake is located between 290 21’ N latitude and 790 24’ E longitude, at an elevation of 1332m above mean sea level in the Kumaun region of Uttarakhand of Indian subcontinent. The lake surface area is decreasing in water area, depth level in relation to ecological and biological characteristics due to climatic variations, invasive land use pattern, degraded forest zones and changed agriculture pattern in lake catchment basin. The present study is focused on long and short term effects of climate change on aquatic biodiversity and productivity of Bhimtal lake. The meteorological data of last fifteen years of Bhimtal lake catchment basin revealed that air temperature has been increased 1.5 to 2.1oC in summer, 0.2 to 0.8 C in winter, relative humidity increased 4 to 6% in summer and rainfall pattern changed erratically in rainy seasons. The surface water temperature of Bhimtal lake showed an increasing pattern as 0.8 to 2.6 C, pH value decreased 0.5 to 0.2 in winter and increased 0.4 to 0.6 in summer. Dissolved oxygen level in lake showed a decreasing trend as 0.7 to 0.4mg/l in winter months. The mesotrophic nature of Bhimtal lake is changing towards eutrophic conditions and contributed for decreasing biodiversity. The aquatic biodiversity of Bhimtal lake consisted mainly phytoplankton, zooplankton, benthos and fish species. In the present study, a total of 5 groups of phytoplankton, 3 groups of zooplankton, 11 groups of benthos and 15 fish species were recorded from Bhimtal lake. The comparative data of biodiversity of Bhimtal lake since January, 2000 indicated the changing pattern of phytoplankton biomass were decreasing as 1.99 and 1.08% of Chlorophyceae and Bacilleriophyceae families respectively. The biomass of Cynophyceae was increasing as 0.45% and contributing the algal blooms during summer season in lake. The biomass of zooplankton and benthos were found decreasing in winter season and increasing during summer season. The endemic fish species (18 no.) were found in year 2000-05, as while the fish species (15 no.) were recorded in present study. The relative fecundity of major fish species were observed decreasing trends during their breeding periods in lake. The natural and anthropogenic factors were identified as ecological threats for existing aquatic biodiversity of Bhimtal lake. The present research paper emphasized on the effect of changing pattern of different climatic variables on species composition, biomass of phytoplankton, zooplankton, benthos, and fishes in Bhimtal lake of Kumaun region. The present research data will be contributed significantly to assess the changing pattern of aquatic biodiversity and productivity of Bhimtal lake with different time scale.

Keywords: aquatic biodiversity, Bhimtal lake, climate change, lake ecology

Procedia PDF Downloads 222
3573 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 45
3572 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 312
3571 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 232
3570 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 58
3569 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 230
3568 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)

Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh

Abstract:

Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.

Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment

Procedia PDF Downloads 372
3567 Dietary Patterns and Hearing Loss in Older People

Authors: N. E. Gallagher, C. E. Neville, N. Lyner, J. Yarnell, C. C. Patterson, J. E. Gallacher, Y. Ben-Shlomo, A. Fehily, J. V. Woodside

Abstract:

Hearing loss is highly prevalent in older people and can reduce quality of life substantially. Emerging research suggests that potentially modifiable risk factors, including risk factors previously related to cardiovascular disease risk, may be associated with a decreased or increased incidence of hearing loss. This has prompted investigation into the possibility that certain nutrients, foods or dietary patterns may also be associated with incidence of hearing loss. The aim of this study was to determine any associations between dietary patterns and hearing loss in men enrolled in the Caerphilly study. The Caerphilly prospective cohort study began in 1979-1983 with recruitment of 2512 men aged 45-59 years. Dietary data was collected using a self-administered, semi-quantitative, 56-item food frequency questionnaire (FFQ) at baseline (1979-1983), and 7-day weighed food intake (WI) in a 30% sub-sample, while pure-tone unaided audiometric threshold was assessed at 0.5, 1, 2 and 4 kHz, between 1984 and 1988. Principal components analysis (PCA) was carried out to determine a posteriori dietary patterns and multivariate linear and logistic regression models were used to examine associations with hearing level (pure tone average (PTA) of frequencies 0.5, 1, 2 and 4 kHz in decibels (dB)) for linear regression and with hearing loss (PTA>25dB) for logistic regression. Three dietary patterns were determined using PCA on the FFQ data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, both linear and logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P<0.001) and linear regression analysis showed a significant association between the High sugar/Alcohol avoider pattern and hearing loss (P=0.04). Three similar dietary patterns were determined using PCA on the WI data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P=0.02) and a significant association between the Traditional pattern and hearing loss (P=0.04). A Healthy dietary pattern was found to be significantly inversely associated with hearing loss in middle-aged men in the Caerphilly study. Furthermore, a High sugar/Alcohol avoider pattern (FFQ) and a Traditional pattern (WI) were associated with poorer hearing levels. Consequently, the role of dietary factors in hearing loss remains to be fully established and warrants further investigation.

Keywords: ageing, diet, dietary patterns, hearing loss

Procedia PDF Downloads 231
3566 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa

Authors: Martial Amou

Abstract:

This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.

Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District

Procedia PDF Downloads 326
3565 Transcultural Study on Social Intelligence

Authors: Martha Serrano-Arias, Martha Frías-Armenta

Abstract:

Significant results have been found both supporting universality of emotion recognition and cultural background influence. Thus, the aim of this research was to test a Mexican version of the MTSI in different cultures to find differences in their performance. The MTSI-Mx assesses through a scenario approach were subjects must evaluate real persons. Two target persons were used for the construction, a man (FS) and a woman (AD). The items were grouped in four variables: Picture, Video, and FS and AD scenarios. The test was applied to 201 students from Mexico and Germany. T-test for picture and FS scenario show no significance. Video and AD had a significance at the 5% level. Results show slight differences between cultures, although a more comprehensive research is needed to conclude which culture can perform better in this kind of assessments.

Keywords: emotion recognition, MTSI, social intelligence, transcultural study

Procedia PDF Downloads 327
3564 Effectiveness of Integrative Behavioral Couples Therapy on the Communication Patterns of Couples Applying for Divorce

Authors: Sakineh Abbasi Bourondaragh

Abstract:

The aim of this research is effectiveness of integrative behavioral couples therapy on the communication patterns of couples applying for divorce. We selected (N=20) reports from Tabriz Family Judicial Complex (FJC) of couples which have conflict in their marital relationships. All of reports were released during 2012. First, they were randomly divided into two experimental and control groups and all the couples were given pre-test. They participated in twelve therapy sessions. Then the experimental group was exposed to an experimental intervention, but the control group was not received experimental intervention. The subjects were treated. At the end of treatment, a post-test was performed about subjects (each of two groups).The results showed that integrative behavioral couple therapy could increase and improve communication patterns. The findings also showed that integrative behavioral couples therapy had increased mutual constructive pattern and decreased demand/withdraw pattern and mutual avoidance pattern of CPQ sub-scale. Steady change indicator showed that the difference is clinically meaningful.

Keywords: integrative behavioral couple therapy, communication patterns, cognitive sciences, Family Judicial Complex

Procedia PDF Downloads 316
3563 Efficient Single Relay Selection Scheme for Cooperative Communication

Authors: Sung-Bok Choi, Hyun-Jun Shin, Hyoung-Kyu Song

Abstract:

This paper proposes a single relay selection scheme in cooperative communication. Decode and forward scheme is considered when a source node wants to cooperate with a single relay for data transmission. To use the proposed single relay selection scheme, the source node make a little different pattern signal which is not complex pattern and broadcasts it. The proposed scheme does not require the channel state information between the source node and candidates of the relay during the relay selection. Therefore, it is able to be used in many fields.

Keywords: relay selection, cooperative communication, df, channel codes

Procedia PDF Downloads 671
3562 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors

Authors: Darshna Sharma, Suban K. Sahoo

Abstract:

The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.

Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT

Procedia PDF Downloads 402
3561 Scheduling Method for Electric Heater in HEMS considering User’s Comfort

Authors: Yong-Sung Kim, Je-Seok Shin, Ho-Jun Jo, Jin-O Kim

Abstract:

Home Energy Management System (HEMS) which makes the residential consumers contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it also represents impacts of the comfort level on the scheduling result.

Keywords: load scheduling, usage pattern, user’s comfort, copula function, branch and bound, electric heater

Procedia PDF Downloads 586
3560 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 264
3559 Turing Pattern in the Oregonator Revisited

Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss

Abstract:

In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.

Keywords: diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix

Procedia PDF Downloads 359
3558 A Review on Predictive Sound Recognition System

Authors: Ajay Kadam, Ramesh Kagalkar

Abstract:

The proposed research objective is to add to a framework for programmed recognition of sound. In this framework the real errand is to distinguish any information sound stream investigate it & anticipate the likelihood of diverse sounds show up in it. To create and industrially conveyed an adaptable sound web crawler a flexible sound search engine. The calculation is clamor and contortion safe, computationally productive, and hugely adaptable, equipped for rapidly recognizing a short portion of sound stream caught through a phone microphone in the presence of frontal area voices and other predominant commotion, and through voice codec pressure, out of a database of over accessible tracks. The algorithm utilizes a combinatorial hashed time-recurrence group of stars examination of the sound, yielding ordinary properties, for example, transparency, in which numerous tracks combined may each be distinguished.

Keywords: fingerprinting, pure tone, white noise, hash function

Procedia PDF Downloads 324
3557 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms

Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan

Abstract:

This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.

Keywords: binary classifier, CNN, spectrogram, instrument

Procedia PDF Downloads 85
3556 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 49