Search results for: replica material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6694

Search results for: replica material

1054 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
1053 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada

Authors: Simran Kaur, Paul J. Van Geel

Abstract:

A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.

Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization

Procedia PDF Downloads 132
1052 Factors That Determine International Competitiveness of Agricultural Products in Latin America 1990-2020

Authors: Oluwasefunmi Eunice Irewole, Enrique Armas Arévalos

Abstract:

Agriculture has played a crucial role in the economy and the development of many countries. Moreover, the basic needs for human survival are; food, shelter, and cloth are link on agricultural production. Most developed countries see that agriculture provides them with food and raw materials for different goods such as (shelter, medicine, fuel and clothing) which has led to an increase in incomes, livelihoods and standard of living. This study aimed at analysing the relationship between International competitiveness of agricultural products, with the area, fertilizer, labour force, economic growth, foreign direct investment, exchange rate and inflation rate in Latin America during the period of 1991-to 2019. In this study, panel data econometric methods were used, as well as cross-section dependence (Pesaran test), unit root (cross-section Augumented Dickey Fuller and Cross-sectional Im, Pesaran, and Shin tests), cointergration (Pedroni and Fisher-Johansen tests), and heterogeneous causality (Pedroni and Fisher-Johansen tests) (Hurlin and Dumitrescu test). The results reveal that the model has cross-sectional dependency and that they are integrated at one I. (1). The "fully modified OLS and dynamic OLS estimators" were used to examine the existence of a long-term relationship, and it was found that a long-term relationship existed between the selected variables. The study revealed a positive significant relationship between International Competitiveness of the agricultural raw material and area, fertilizer, labour force, economic growth, and foreign direct investment, while international competitiveness has a negative relationship with the advantages of the exchange rate and inflation. The economy policy recommendations deducted from this investigation is that Foreign Direct Investment and the labour force have a positive contribution to the increase of International Competitiveness of agricultural products.

Keywords: revealed comparative advantage, agricultural products, area, fertilizer, economic growth, granger causality, panel unit root

Procedia PDF Downloads 100
1051 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network

Procedia PDF Downloads 225
1050 Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria

Authors: Ubon Asuquo Essien, Okwudili Bismark Ibeagwa, Daberechi Peace Ubabuko

Abstract:

The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing.

Keywords: broilers, factor analysis, income, small scale

Procedia PDF Downloads 80
1049 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli

Procedia PDF Downloads 142
1048 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
1047 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading

Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat

Abstract:

Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.

Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section

Procedia PDF Downloads 144
1046 Moderation Role of Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians

Authors: Larry O. Awo, George N. Duru

Abstract:

There is growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement driven by the quest for resource gains. However, evidences show that the economic model of gambling tend to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover loses has often initiated and prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcome as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decision of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at a low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings are that IOC and upward counterfactual reasoning were risk factors and promote gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.

Keywords: counterfactual reasoning, gambling cognition, gambling decision, nigeria, youths

Procedia PDF Downloads 107
1045 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles

Authors: Yuvraj S. Malghe, Atul B. Lavand

Abstract:

In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.

Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide

Procedia PDF Downloads 284
1044 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 183
1043 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain

Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani

Abstract:

INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.

Keywords: neuropathic pain, chronic pain, treatment, gabapentin

Procedia PDF Downloads 94
1042 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing

Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch

Abstract:

Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.

Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity

Procedia PDF Downloads 237
1041 Evaluation of Natural Gums: Gum Tragacanth, Xanthan Gum, Guar Gum and Gum Acacia as Potential Hemostatic Agents

Authors: Himanshu Kushwah, Nidhi Sandal, Meenakshi K. Chauhan, Gaurav Mittal

Abstract:

Excessive bleeding is the primary factor of avoidable death in both civilian trauma centers as well as the military battlefield. Hundreds of Indian troops die every year due to blood loss caused by combat-related injuries. These deaths are avoidable and can be prevented to a large extent by making available a suitable hemostatic dressing in an emergency medical kit. In this study, natural gums were evaluated as potential hemostatic agents in combination with calcium gluconate. The study compares the hemostatic activity of Gum Tragacanth (GT), Guar Gum (GG), Xanthan Gum (XG) and Gum Acacia (GA) by carrying out different in-vitro and in-vivo studies. In-vitro studies were performed using the Lee-White method and Eustrek method, which includes the visual and microscopic analysis of blood clotting. MTT assay was also performed using human lymphocytes to check the cytotoxicity of the gums. The in-vivo studies were performed in Sprague Dawley rats using tail bleeding assay to evaluate the hemostatic efficacy of the gums and compared with a commercially available hemostatic sponge, Surgispon. Erythrocyte agglutination test was also performed to check the interaction between blood cells and the natural gums. Other parameters like blood loss, adherence strength of the developed hemostatic dressing material incorporating these gums, re-bleeding, and survival of the animals were also studied. The data obtained from the MTT assay showed that Guar gum, Gum Tragacanth, and Gum Acacia were not significantly cytotoxic, but substantial cytotoxicity was observed in Xanthan gum samples at high concentrations. Also, Xanthan gum took the least time with its minimum concentration to achieve hemostasis, (approximately 50 seconds at 3mg concentration). Gum Tragacanth also showed efficient hemostasis at a concentration of 35mg at the same time, but the other two gums tested were not able to clot the blood in significantly less time. A sponge dressing made of Tragacanth gum was found to be more efficient in achieving hemostasis and showed better practical applicability among all the gums studied and also when compared to the commercially available product, Surgispon, thus making it a potentially better alternative.

Keywords: cytotoxicity, hemostasis, natural gums, sponge

Procedia PDF Downloads 147
1040 Understanding the Health Issues of Impoverished Child Rag Pickers in India

Authors: Burhan Khan

Abstract:

Objective: This study aims to enhance the body of knowledge about the vulnerabilities of child waste pickers in solid waste management. The primary objective of this research is to investigate the occupational menaces and their potential harm to the health of child waste pickers. Material and Methods: The present study design is descriptive in nature and involves children aged 5 through 14, who were rummaging through garbage in the roads and streets of Aligarh city, Uttar Pradesh. The researcher adopted an empirical approach to interview 65 participants (27 boys and 38 girls) across Aligarh city, Uttar Pradesh. The majority of the participants are Muslims (76.9 %), scheduled Castes (13.8 %), and Hindus (9.2 %). Out of 65 participants, 73.8% of children were migrated within the last five years. The primary data were analysed by utilising descriptive statistics, including frequencies, cross-tabs, means, and percentages. Results: The results show that the vast majority of children (87.7%) have experienced superficial injuries or open wound at their work. More than 32% were suffering from respiratory problems such as coughing, wheezing and short of breath, close to 37% reported skin problems like allergy, irritation and bruising and 4.6% had eye problems such as pain and irritation in eyes. Nearly 78% of children lift and carry a heavy load like large garbage bags. Over 83% informed that they sort through refuse in a filthy environment such as open dumpsites, effluents, and runnels. Conclusion: This research provides pieces of evidence of how children are being tormented in the rag-picking sector. It has been observed that child rag pickers are susceptible to injuries or illnesses due to work-related risks and toxic environment. In India, there is no robust policy to address the concerns of waste pickers and laws to protect their rights. Consequently, these deprived communities of rag pickers, especially children, have become more vulnerable over time in India. Hence, this research paper calls for a quick response to the exigencies of child rag picker by developing a holistic approach that deals with education, medical care, sanitation, and nutrition for child rag pickers.

Keywords: child rag pickers, health impairments, occupational hazards, toxic environment

Procedia PDF Downloads 124
1039 Insight into Enhancement of CO2 Capture by Clay Minerals

Authors: Mardin Abdalqadir, Paul Adzakro, Tannaz Pak, Sina Rezaei Gomari

Abstract:

Climate change and global warming recently became significant concerns due to the massive emissions of greenhouse gases into the atmosphere, predominantly CO2 gases. Therefore, it is necessary to find sustainable and inexpensive methods to capture the greenhouse gasses and protect the environment for live species. The application of naturally available and cheap adsorbents of carbon such as clay minerals became a great interest. However, the minerals prone to low storage capacity despite their high affinity to adsorb carbon. This paper aims to explore ways to improve the pore volume and surface area of two selected clay minerals, ‘montmorillonite and kaolinite’ by acid treatment to overcome their low storage capacity. Montmorillonite and kaolinite samples were treated with different sulfuric acid concentrations (0.5, 1.2 and 2.5 M) at 40 °C for 8 hours to achieve the above aim. The grain size distribution and morphology of clay minerals before and after acid treatment were explored with Scanning Electron Microscope to evaluate surface area improvement. The ImageJ software was used to find the porosity and pore volume of treated and untreated clay samples. The structure of the clay minerals was also analyzed using an X-ray Diffraction machine. The results showed that the pore volume and surface area were increased substantially through acid treatment, which speeded up the rate of carbon dioxide adsorption. XRD pattern of kaolinite did not change after sulfuric acid treatment, which indicates that acid treatment would not affect the structure of kaolinite. It was also discovered that kaolinite had a higher pore volume and porosity than montmorillonite before and after acid treatment. For example, the pore volume of untreated kaolinite was equal to 30.498 um3 with a porosity of 23.49%. Raising the concentration of acid from 0.5 M to 2.5 M in 8 hours’ time reaction led to increased pore volume from 30.498 um3 to 34.73 um3. The pore volume of raw montmorillonite was equal to 15.610 um3 with a porosity of 12.7%. When the acid concentration was raised from 0.5 M to 2.5 M for the same reaction time, pore volume also increased from 15.610 um3 to 20.538 um3. However, montmorillonite had a higher specific surface area than kaolinite. This study concludes that clay minerals are inexpensive and available material sources to model the realistic conditions and apply the results of carbon capture to prevent global warming, which is one of the most critical and urgent problems in the world.

Keywords: acid treatment, kaolinite, montmorillonite, pore volume, porosity, surface area

Procedia PDF Downloads 168
1038 Assessing Project Performance through Work Sampling and Earned Value Analysis

Authors: Shobha Ramalingam

Abstract:

The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.

Keywords: earned value analysis, time performance, project costs, project delays, construction productivity

Procedia PDF Downloads 97
1037 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection

Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol

Abstract:

The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.

Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress

Procedia PDF Downloads 225
1036 Sustainable Development in Orthodontics: Orthodontic Archwire Waste

Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers

Abstract:

Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.

Keywords: archwire, orthodontics, sustainability, waste

Procedia PDF Downloads 195
1035 Characterization of Kevlar 29 for Multifunction Applications

Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia

Abstract:

Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.

Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.

Procedia PDF Downloads 80
1034 Lack of Physical Activity In Schools: Study Carried Out on School-aged Adolescents

Authors: Bencharif Meriem, Sersar Ibrahim, Djaafri Zineb

Abstract:

Introduction and purpose of the study: Education plays a fundamental role in the lives of young people, but what about their physical well-being as they spend long hours sitting at school? School inactivity is a problem that deserves particular attention because it can have significant repercussions on the health and development of students. The aim of this study was to describe and evaluate the physical activity of students in different practices in class, at recess and in the canteen. Material and methods: A physical activity diary and an anthropometric measurement sheet (weight, height) were provided to 123 school-aged adolescents. The measurements were carried out according to international recommendations. The statistical tests were carried out with the R software. 3.2.4. The significance threshold retained was 0.05. Results and Statistical Analysis: One hundred and twenty-three students agreed to participate in the study. Their average age was 16.5±1.60 years. Overweight was present in 8.13% and obesity in 4.06%. For the practice of physical activity, during physical education and sports classes, all students played sports with an average of 1.94±1.00 hours/week, of which 74.00% sweated or were out of breath during these hours of physical activity. It was also noted that boys practiced sports more than girls (p<0.0001). Each day, on average, students spent 39.78±37.85 min walking or running during recess. On the other hand, they spent, on average 4.25±2.65 hours sitting per day in class, at recess, in the canteen, etc., without counting the time spent in front of a screen. The increasing use of screens has become a major concern for parents and educators. On average, students spent approximately 42.90±38.41 min per day using screens in class, at recess, in the canteen and at home. (computer, tablet, telephone, video games, etc.) and therefore to a prolonged sedentary lifestyle. On average, students sat for more than 1.5 hours without moving for at least 2 minutes in a row approximately 1.72±0.71 times per day. Conclusion: These students spent many hours sitting at school. This prolonged inactivity can have negative consequences on their health, including problems with posture and cardiovascular health. It is crucial that schools, educators and parents collaborate to promote more active learning environments where students can move more and thus contribute to their overall well-being. It's time to rethink how we approach education and student health to give them a healthier, more active future.

Keywords: physical acivity, sedentarity, adolescents, school

Procedia PDF Downloads 60
1033 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 432
1032 Creative Mathematically Modelling Videos Developed by Engineering Students

Authors: Esther Cabezas-Rivas

Abstract:

Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.

Keywords: active learning, contextual teaching, models in differential equations, student-produced videos

Procedia PDF Downloads 145
1031 Preliminary Report on the Assessment of the Impact of the Kinesiology Taping Application versus Placebo Taping on the Knee Joint Position Sense

Authors: Anna Hadamus, Patryk Wasowski, Anna Mosiolek, Zbigniew Wronski, Sebastian Wojtowicz, Dariusz Bialoszewski

Abstract:

Introduction: Kinesiology Taping is a very popular physiotherapy method, often used for healthy people, especially athletes, in order to stimulate the muscles and improve their performance. The aim of this study was to determine the effect of the muscle application of Kinesiology Taping on the joint position sense in active motion. Material and Methods: The study involved 50 healthy people - 30 men and 20 women, mean age was 23.2 years (range 18-30 years). The exclusion criteria were injuries and operations of the knee, which could affect the test results. The participants were divided randomly into two equal groups. The first group consisted of individuals with the applied Kinesiology Taping muscle application (KT group), whereas in the rest of the individuals placebo application from red adhesive tape was used (placebo group). Both applications were to enhance the effects of quadriceps muscle activity. Joint position sense (JPS) was evaluated in this study. Error of Active Reproduction of the Joint Position (EARJP) of the knee was measured in 45° flexion. The test was performed prior to applying the patch, with the applied application, then 24 hours after wearing, and after removing the tape. The interval between trials was not less than 30 minutes. Statistical analysis was performed using Statistica 12.0. We calculated distribution characteristics, Wilcoxon test, Friedman‘s ANOVA and Mann-Whitney U test. Results. In the KT group and the placebo group average test score of JPS before applying application KT were 3.48° and 5.16° respectively, after its application it was 4.84° and 4.88°, then after 24 hours of experiment JPS was 5.12° and 4.96°, and after application removal we measured 3.84° and 5.12° respectively. Differences over time in any of the groups were not statistically significant. There were also no significant differences between the groups. Conclusions: 1. Applying Kinesiology Taping to quadriceps muscle had no significant effect on the knee joint proprioception. Its use in order to improve sensorimitor skills seems therefore to be unreasonable. 2. No differences between applications of KT and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous study groups.

Keywords: joint position sense, kinesiology taping, kinesiotaping, knee

Procedia PDF Downloads 339
1030 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption

Procedia PDF Downloads 360
1029 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 143
1028 Electrospun Nanofibers from Amphiphlic Block Copolymers and Their Graphene Nanocomposites

Authors: Hussein M. Etmimi, Peter E. Mallon

Abstract:

Electrospinning uses an electrical charge to draw very fine fibers (typically on the micro or nano scale) from a liquid or molten precursor. Over the years, this method has become a widely used and a successful technique to process polymer materials and their composites into nanofibers. The main focus of this work is to study the electrospinning of multi-phase amphiphilic copolymers and their nanocomposites, which contain graphene as the nanofiller material. In such amphiphilic materials, the constituents segments are incompatible and thus the solid state morphology will be determined by the composition of the various constituents as well as the method of preparation. In this study, amphiphilic block copolymers of poly(dimethyl siloxane) and poly(methyl methacrylate) (PDMS-b-PMMA) with well-defined structures were synthesized and the solution electrospinning of these materials and their properties were investigated. Atom transfer radical polymerization (ATRP) was used to obtain the controlled block copolymers with relatively high molar masses and narrow dispersity. First, PDMS macroinitiators with different chain length of 1000, 5000 and 10000 g/mol were synthesized by the reaction of monocarbinol terminated PDMS with α-bromoisobutyryl bromide initiator. The obtained macroinitiators were used for the polymerization of methyl methacrylate monomer to obtain the desired block copolymers using the ATRP process. Graphene oxide (GO) of different loading was then added to the copolymer solution and the resultant nanocomposites were successfully electrospun into nanofibers. The electrospinning was achieved using dimethylformamide/chloroform mixture (60:40 vl%) as electrospinning solution medium. Scanning electron microscopy (SEM) showed the successful formation of the electrospun fibers with dimensions in the nanometer range. X-ray diffraction indicated that the GO nanosheets were of an exfoliated structure, irrespective of the filler loading. Thermogravimetric analysis also showed that the thermal stability of the nanofibers was improved in the presence of GO, which was not a function of the filler loading. Differential scanning calorimetry also showed that the mechanical properties (measured as glass transition temperature) of the nanofibers was improved significantly in the presence of GO, which was a function of the filler loading.

Keywords: elctrospinning, graphene oxide, nanofibers, polymethyl methacrylate (PMMA)

Procedia PDF Downloads 306
1027 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure

Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao

Abstract:

Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.

Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond

Procedia PDF Downloads 134
1026 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.

Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy

Procedia PDF Downloads 133
1025 Online Augmented Reality Mathematics Application

Authors: Farhaz Amyn Rajabali, Collins Odour

Abstract:

Mathematics has been there for over 4000 years and has been one of the very first educational topics explored by human civilization. Throughout the years, it has become a complex study and has derived so many other subjects. With advancements in ICT, most of the computation in mathematics is done using powerful computers. In many different countries, the children in primary and secondary schools face difficulties in learning mathematics, and this has many reasons behind it, one being the students don’t engage much with the mathematical concepts hence failing to understand them deeply. The objective of this system is to help the students understand this mathematical concept interactively, which in return will encourage the love for learning and increase thorough understanding of many concepts. Research was conducted among a group of samples and about 50% of respondents replied that they had never used an augmented reality application before. This means that the chances for this system to be accepted in the market are high due to its innovative idea. Around 60% of people did recommend the use of this system to learn mathematics. The study also showed several challenges in an educational system, including but not limited to lack of resources which was chosen by 30% of respondents, the challenge to read from textbooks (34.6%) and how hard it is to visualize concepts (46.2%). The survey question asked what benefits the users see using augmented reality to learn mathematics. The responses that were picked the most were increased student engagement and using real-world examples to understand concepts, both being 65.4% and followed by easy access to learning material at 61.5%, and increased knowledge retention at 50%. This shows that there are plenty of issues with an education system that can be addressed by software applications; now that the newer generation is so enthusiastic about electronic devices, it can actually be used to deliver good knowledge and skills to the upcoming students and mitigate most of the challenges faced currently. The study concludes that the implementation of the system is a best practice for the educational system especially leveraging a new technology that has the ability to attract the attention of many young students and use it to deliver information. It will also give rise to awareness of new technology and on multiple ways it can be implemented. Addressing the educational sector in developing countries using information technology is an imperative task since these kids studying now is the future of the country and will use what they learn and understand during their childhood will help them to make decisions about their lives in the future which will not only affect them personally but also affect the whole society in general.

Keywords: AR, mathematics, system development, augmented reality

Procedia PDF Downloads 83