Search results for: computer generated holograms
17 Extension of Moral Agency to Artificial Agents
Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney
Abstract:
Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfullyKeywords: artificial agency, correctional system, ethics, natural agency, responsibility
Procedia PDF Downloads 19616 An Artistic-Narrative Process for Reducing Suicide Risk Among Minority Stressed Individuals
Authors: Lewis Mehl-Madrona, Barbara Mainguy, Patrick McFarlane
Abstract:
Introduction: There are many risk factors for attempting suicide, including young age, “minority stress,” which would include Transgender and Gender Diverse orientations (TGD). The rate of TGD youths for suicide attempts is 3 times higher than heterosexual cis-gender youth. Half of TGD youth have seriously contemplated taking their own lives; of those, about half attempted suicide; and 18% of the TGD teenagers reported suicidal thoughts linked to their gender identity. Native American TGD have a six times higher suicide attempt rate. Conventional mental health has not generally helped these individuals. Stigma and discrimination contribute to healthcare disparities. Storytelling plays a crucial role in the development of human culture and individual identities. Sharing narrative artwork, creative writing, and personal stories allow people to build trust and to share their vulnerabilities. This helps people become aware of themselves in relation to others and gain a sense of comfort that their stories are similar; they may also be transformed in the process. Art provides a means to reach people who are otherwise difficult to engage in services. Methods: TGD individuals are recruited through a snowballing procedure. Following a life story interview, participants complete a scale of gender dysphoria, identification with conventional masculinity, patient-reported anxiety, and depression measure, and a quality-of-life scale. The interview completes the Columbia Suicide Scale. Following this, an artist and a therapist works with the participant to create a story related to their gender identity using the six-part story method. This story is then rendered to an artists’ book, which combines narrative with art (drawings, collage, computer images, etc.) and can take the form of a graphic novella, a zine, or a comic book. The pages can range from plain to ornate, as can the covers. Participants describe their process of making the books as the work unfolds and then participate in an exit interview at the completion of their book, remarking on what has changed for them and how the process affected them. Results: Preliminary results show high levels of suicidal thoughts among this population, as expected. Participants participate enthusiastically in the life story interview process and in the construction of a story related to gender identity. They enthusiastically participate in the studio process of putting their story into the form of a graphic novel, zine, or comic book. Participants reported feeling more comfortable with their TGD identity after the process and more able to resist negative judgments of family members and society. Suicidal thoughts diminish, and participants reported improved emotional wellbeing. Quantitative analysis of questionnaire data is underway Conclusions: A process in which narrative therapy is combined with art therapy shows promise for attracting and helping TGD individuals to reduce their risk for suicide without the stigma of going for mental health treatment. This process can be done outside of conventional mental health settings, on college and University campuses. This can provide an exciting alternative pathway for minority stressed and stigmatized individuals to engage in reflective, psychotherapeutic work without the trappings of psychotherapy or mental health treatment.Keywords: minority stress, narrative process, artists' books, life story interview
Procedia PDF Downloads 17915 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method
Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López
Abstract:
The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people
Procedia PDF Downloads 13314 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems
Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana
Abstract:
Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP
Procedia PDF Downloads 20813 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”
Authors: Lauren B. Birney
Abstract:
The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.Keywords: environmental science, citizen science, STEM, technology
Procedia PDF Downloads 10012 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 11511 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece
Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana
Abstract:
The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.Keywords: blended learning, integration, language education, refugees
Procedia PDF Downloads 13110 Auditory Rehabilitation via an VR Serious Game for Children with Cochlear Implants: Bio-Behavioral Outcomes
Authors: Areti Okalidou, Paul D. Hatzigiannakoglou, Aikaterini Vatou, George Kyriafinis
Abstract:
Young children are nowadays adept at using technology. Hence, computer-based auditory training programs (CBATPs) have become increasingly popular in aural rehabilitation for children with hearing loss and/or with cochlear implants (CI). Yet, their clinical utility for prognostic, diagnostic, and monitoring purposes has not been explored. The purposes of the study were: a) to develop an updated version of the auditory rehabilitation tool for Greek-speaking children with cochlear implants, b) to develop a database for behavioral responses, and c) to compare accuracy rates and reaction times in children differing in hearing status and other medical and demographic characteristics, in order to assess the tool’s clinical utility in prognosis, diagnosis, and progress monitoring. The updated version of the auditory rehabilitation tool was developed on a tablet, retaining the User-Centered Design approach and the elements of the Virtual Reality (VR) serious game. The visual stimuli were farm animals acting in simple game scenarios designed to trigger children’s responses to animal sounds, names, and relevant sentences. Based on an extended version of Erber’s auditory development model, the VR game consisted of six stages, i.e., sound detection, sound discrimination, word discrimination, identification, comprehension of words in a carrier phrase, and comprehension of sentences. A familiarization stage (learning) was set prior to the game. Children’s tactile responses were recorded as correct, false, or impulsive, following a child-dependent set up of a valid delay time after stimulus offset for valid responses. Reaction times were also recorded, and the database was in Εxcel format. The tablet version of the auditory rehabilitation tool was piloted in 22 preschool children with Νormal Ηearing (ΝΗ), which led to improvements. The study took place in clinical settings or at children’s homes. Fifteen children with CI, aged 5;7-12;3 years with post-implantation 0;11-5;1 years used the auditory rehabilitation tool. Eight children with CI were monolingual, two were bilingual and five had additional disabilities. The control groups consisted of 13 children with ΝΗ, aged 2;6-9;11 years. A comparison of both accuracy rates, as percent correct, and reaction times (in sec) was made at each stage, across hearing status, age, and also, within the CI group, based on presence of additional disability and bilingualism. Both monolingual Greek-speaking children with CI with no additional disabilities and hearing peers showed high accuracy rates at all stages, with performances falling above the 3rd quartile. However, children with normal hearing scored higher than the children with CI, especially in the detection and word discrimination tasks. The reaction time differences between the two groups decreased in language-based tasks. Results for children with CI with additional disability or bilingualism varied. Finally, older children scored higher than younger ones in both groups (CI, NH), but larger differences occurred in children with CI. The interactions between familiarization of the software, age, hearing status and demographic characteristics are discussed. Overall, the VR game is a promising tool for tracking the development of auditory skills, as it provides multi-level longitudinal empirical data. Acknowledgment: This work is part of a project that has received funding from the Research Committee of the University of Macedonia under the Basic Research 2020-21 funding programme.Keywords: VR serious games, auditory rehabilitation, auditory training, children with cochlear implants
Procedia PDF Downloads 919 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis
Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu
Abstract:
Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.Keywords: GPT, phantom-less QCT, large language model, osteoporosis
Procedia PDF Downloads 748 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 987 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study
Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre
Abstract:
Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.
Procedia PDF Downloads 1156 Damages of Highway Bridges in Thailand during the 2014-Chiang Rai Earthquake
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
On May 5, 2014, an earthquake of magnitude 6.3 Richter hit the Northern part of Thailand. The epicenter was in Phan District, Chiang Rai Province. This earthquake or the so-called 2014-Chiang Rai Earthquake is the strongest ground shaking that Thailand has ever been experienced in her modern history. The 2014-Chiang Rai Earthquake confirms the geological evidence, which has previously been ignored by most engineers, that earthquakes of considerable magnitudes 6 to 7 Richter can occurr within the country. This promptly stimulates authorized agencies to pay more attention at the safety of their assets and promotes the comprehensive review of seismic resistance design of their building structures. The focus of this paper is to summarize the damages of highway bridges as a result of the 2014-Chiang Rai ground shaking, the remedy actions, and the research needs. The 2014-Chiang Rai Earthquake caused considerable damages to nearby structures such as houses, schools, and temples. The ground shaking, however, caused damage to only one highway bridge, Mae Laos Bridge, located several kilometers away from the epicenter. The damage of Mae Laos Bridge was in the form of concrete spalling caused by pounding of cap beam on the deck structure. The damage occurred only at the end or abutment span. The damage caused by pounding is not a surprise, but the pounding by only one bridge requires further investigation and discussion. Mae Laos Bridge is a river crossing bridge with relatively large approach structure. In as much, the approach structure is confined by strong retaining walls. This results in a rigid-like approach structure which vibrates at the acceleration approximately equal to the ground acceleration during the earthquake and exerts a huge force to the abutment causing the pounding of cap beam on the deck structure. Other bridges nearby have relatively small approach structures, and therefore have no capability to generate pounding. The effect of mass of the approach structure on pounding of cap beam on the deck structure is also evident by the damage of one pedestrian bridge in front of Thanthong Wittaya School located 50 meters from Mae Laos Bridge. The width of the approach stair of this bridge is wider than the typical one to accommodate the stream of students during pre- and post-school times. This results in a relatively large mass of the approach stair which in turn exerts a huge force to the pier causing pounding of cap beam on the deck structure during ground shaking. No sign of pounding was observed for a typical pedestrian bridge located at another end of Mae Laos Bridge. Although pounding of cap beam on the deck structure of the above mentioned bridges does not cause serious damage to bridge structure, this incident promotes the comprehensive review of seismic resistance design of highway bridges in Thailand. Given a proper mass and confinement of the approach structure, the pounding of cap beam on the deck structure can be easily excited even at the low to moderate ground shaking. In as much, if the ground shaking becomes stronger, the pounding is certainly more powerful. This may cause the deck structure to be unseated and fall off in the case of unrestrained bridge. For the bridge with restrainer between cap beam and the deck structure, the restrainer may prevent the deck structure from falling off. However, preventing free movement of the pier by the restrainer may damage the pier itself. Most highway bridges in Thailand have dowel bars embedded connecting cap beam and the deck structure. The purpose of the existence of dowel bars is, however, not intended for any seismic resistance. Their ability to prevent the deck structure from unseating and their effect on the potential damage of the pier should be evaluated. In response to this expected situation, Thailand Department of Highways (DOH) has set up a team to revise the standard practices for the seismic resistance design of highway bridges in Thailand. In addition, DOH has also funded the research project 'Seismic Resistance Evaluation of Pre- and Post-Design Modifications of DOH’s Bridges' with the scope of full-scale tests of single span bridges under reversed cyclic static loadings for both longitudinal and transverse directions and computer simulations to evaluate the seismic performance of the existing bridges and the design modification bridges. The research is expected to start in October, 2015.Keywords: earthquake, highway bridge, Thailand, damage, pounding, seismic resistance
Procedia PDF Downloads 2955 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications
Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell
Abstract:
Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting
Procedia PDF Downloads 2724 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1523 Development Programmes Requirements for Managing and Supporting the Ever-Dynamic Job Roles of Middle Managers in Higher Education Institutions: The Espousal Demanded from Human Resources Department; Case Studies of a New University in United Kingdom
Authors: Mohamed Sameer Mughal, Andrew D. Ross, Damian J. Fearon
Abstract:
Background: The fast-paced changing landscape of UK Higher Education Institution (HEIs) is poised by changes and challenges affecting Middle Managers (MM) in their job roles. MM contribute to the success of HEIs by balancing the equilibrium and pass organization strategies from senior staff towards operationalization directives to junior staff. However, this study showcased from the data analyzed during the semi structured interviews; MM job role is becoming more complex due to changes and challenges creating colossal pressures and workloads in day-to-day working. Current development programmes provisions by Human Resources (HR) departments in such HEIs are not feasible, applicable, and matching the true essence and requirements of MM who suggest that programmes offered by HR are too generic to suit their precise needs and require tailor made espousal to work effectively in their pertinent job roles. Methodologies: This study aims to capture demands of MM Development Needs (DN) by means of a conceptual model as conclusive part of the research that is divided into 2 phases. Phase 1 initiated by carrying out 2 pilot interviews with a retired Emeritus status professor and HR programmes development coordinator. Key themes from the pilot and literature review subsidized into formulation of 22 set of questions (Kvale and Brinkmann) in form of interviewing questionnaire during qualitative data collection. Data strategy and collection consisted of purposeful sampling of 12 semi structured interviews (n=12) lasting approximately an hour for all participants. The MM interviewed were at faculty and departmental levels which included; deans (n=2), head of departments (n=4), subject leaders (n=2), and lastly programme leaders (n=4). Participants recruitment was carried out via emails and snowballing technique. The interviews data was transcribed (verbatim) and managed using Computer Assisted Qualitative Data Analysis using Nvivo ver.11 software. Data was meticulously analyzed using Miles and Huberman inductive approach of positivistic style grounded theory, whereby key themes and categories emerged from the rich data collected. The data was precisely coded and classified into case studies (Robert Yin); with a main case study, sub cases (4 classes of MM) and embedded cases (12 individual MMs). Major Findings: An interim conceptual model emerged from analyzing the data with main concepts that included; key performance indicators (KPI’s), HEI effectiveness and outlook, practices, processes and procedures, support mechanisms, student events, rules, regulations and policies, career progression, reporting/accountability, changes and challenges, and lastly skills and attributes. Conclusion: Dynamic elements affecting MM includes; increase in government pressures, student numbers, irrelevant development programmes, bureaucratic structures, transparency and accountability, organization policies, skills sets… can only be confronted by employing structured development programmes originated by HR that are not provided generically. Future Work: Stage 2 (Quantitative method) of the study plans to validate the interim conceptual model externally through fully completed online survey questionnaire (Bram Oppenheim) from external HEIs (n=150). The total sample targeted is 1500 MM. Author contribution focuses on enhancing management theory and narrow the gap between by HR and MM development programme provision.Keywords: development needs (DN), higher education institutions (HEIs), human resources (HR), middle managers (MM)
Procedia PDF Downloads 2382 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 481 Recent Developments in E-waste Management in India
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay, Ananya Mukhopadhyay, Harendra Nath Bhattacharya
Abstract:
This study investigates the global issue of electronic waste (e-waste), focusing on its prevalence in India and other regions. E-waste has emerged as a significant worldwide problem, with India contributing a substantial share of annual e-waste generation. The primary sources of e-waste in India are computer equipment and mobile phones. Many developed nations utilize India as a dumping ground for their e-waste, with major contributions from the United States, China, Europe, Taiwan, South Korea, and Japan. The study identifies Maharashtra, Tamil Nadu, Mumbai, and Delhi as prominent contributors to India's e-waste crisis. This issue is contextualized within the broader framework of the United Nations' 2030 Agenda for Sustainable Development, which encompasses 17 Sustainable Development Goals (SDGs) and 169 associated targets to address poverty, environmental preservation, and universal prosperity. The study underscores the interconnectedness of e-waste management with several SDGs, including health, clean water, economic growth, sustainable cities, responsible consumption, and ocean conservation. Central Pollution Control Board (CPCB) data reveals that e-waste generation surpasses that of plastic waste, increasing annually at a rate of 31%. However, only 20% of electronic waste is recycled through organized and regulated methods in underdeveloped nations. In Europe, efficient e-waste management stands at just 35%. E-waste pollution poses serious threats to soil, groundwater, and public health due to toxic components such as mercury, lead, bromine, and arsenic. Long-term exposure to these toxins, notably arsenic in microchips, has been linked to severe health issues, including cancer, neurological damage, and skin disorders. Lead exposure, particularly concerning for children, can result in brain damage, kidney problems, and blood disorders. The study highlights the problematic transboundary movement of e-waste, with approximately 352,474 metric tonnes of electronic waste illegally shipped from Europe to developing nations annually, mainly to Africa, including Nigeria, Ghana, and Tanzania. Effective e-waste management, underpinned by appropriate infrastructure, regulations, and policies, offers opportunities for job creation and aligns with the objectives of the 2030 Agenda for SDGs, especially in the realms of decent work, economic growth, and responsible production and consumption. E-waste represents hazardous pollutants and valuable secondary resources, making it a focal point for anthropogenic resource exploitation. The United Nations estimates that e-waste holds potential secondary raw materials worth around 55 billion Euros. The study also identifies numerous challenges in e-waste management, encompassing the sheer volume of e-waste, child labor, inadequate legislation, insufficient infrastructure, health concerns, lack of incentive schemes, limited awareness, e-waste imports, high costs associated with recycling plant establishment, and more. To mitigate these issues, the study offers several solutions, such as providing tax incentives for scrap dealers, implementing reward and reprimand systems for e-waste management compliance, offering training on e-waste handling, promoting responsible e-waste disposal, advancing recycling technologies, regulating e-waste imports, and ensuring the safe disposal of domestic e-waste. A mechanism, Buy-Back programs, will compensate customers in cash when they deposit unwanted digital products. This E-waste could contain any portable electronic device, such as cell phones, computers, tablets, etc. Addressing the e-waste predicament necessitates a multi-faceted approach involving government regulations, industry initiatives, public awareness campaigns, and international cooperation to minimize environmental and health repercussions while harnessing the economic potential of recycling and responsible management.Keywords: e-waste management, sustainable development goal, e-waste disposal, recycling technology, buy-back policy
Procedia PDF Downloads 94