Search results for: observational learning
2059 Redefining Infrastructure as Code Orchestration Using AI
Authors: Georges Bou Ghantous
Abstract:
This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making
Procedia PDF Downloads 362058 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 6962057 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.Keywords: authentication, gesture-based passwords, shoulder-surfing attacks, usability
Procedia PDF Downloads 1412056 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh
Procedia PDF Downloads 2872055 Future Metro Station: Remodeling Underground Environment Based on Experience Scenarios and IoT Technology
Authors: Joo Min Kim, Dongyoun Shin
Abstract:
The project Future Station (FS) seek for a deeper understanding of metro station. The main idea of the project is enhancing the underground environment by combining new architectural design with IoT technology. This research shows the understanding of the metro environment giving references regarding traditional design approaches and IoT combined space design. Based on the analysis, this research presents design alternatives in two metro stations those are chosen for a testbed. It also presents how the FS platform giving a response to travelers and deliver the benefit to metro operators. In conclusion, the project describes methods to build future metro service and platform that understand traveler’s intentions and giving appropriate services back for enhancing travel experience. It basically used contemporary technology such as smart sensing grid, big data analysis, smart building, and machine learning technology.Keywords: future station, digital lifestyle experience, sustainable metro, smart metro, smart city
Procedia PDF Downloads 2992054 Positive Politeness in Writing Centre Consultations with an Emphasis on Praise
Authors: Avasha Rambiritch, Adelia Carstens
Abstract:
In especially the context of a writing center, learning takes place during, and as part of, the conversations between the writing center tutor and the student. This interaction or dialogue is an integral part of writing center research and is the focus of this largely qualitative study, employing a politeness lens. While there is some research on positive politeness strategies employed by writing center tutors, there is very little research on specifically praising as a positive politeness strategy. This study attempts to fill this gap by analyzing a corpus of 10 video-recorded consultations to determine how tutors in a writing center utilize the positive politeness strategy of praise. Findings indicate that while tutors exploit a range of politeness strategies, praise is used more often than any other strategy. The research indicates that praise as a politeness strategy is utilized significantly more when commenting on higher-order concerns, as in line with the writing center literature. The benefits of this study include insights into how such analyses can be used to better prepare and equip the tutors (usually postgraduate students appointed as part-time tutors in the writing center) for the work they do on a daily basis.Keywords: writing center, academic writing, positive politeness, tutor
Procedia PDF Downloads 2152053 Recruitment Strategies and Migration Regulations for International Students in the United States and Canada: A Comparative Study
Authors: Aynur Charkasova
Abstract:
The scientific and economic contributions of international students cannot be underestimated. International education continues to be a competitive global industry, and many countries are seeking to recruit the best and the brightest to reinforce scientific innovations, boost intercultural learning, and bring more funding to universities and colleges. Substantial changes in international educational policies and migration regulations have been made in the hopes of recruiting global talent. This paper explores and compares recruitment strategies, employment opportunities, and a legal path to permanent residency policies related to international students in the United States of America and Canada. This study will utilize the legal information available from the government websites of both countries and peer-reviewed scholarly articles and will highlight which approach promises a better path in recruiting and retention of international students. The findings from the study will be discussed and recommendations will be provided.Keywords: International students, current immigration policies, STEM, employability, visa reforms for international students, Canadian recruitment policy
Procedia PDF Downloads 772052 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World
Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor
Abstract:
In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities
Procedia PDF Downloads 262051 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries
Procedia PDF Downloads 4482050 The Role of Artificial Intelligence in Concrete Constructions
Authors: Ardalan Tofighi Soleimandarabi
Abstract:
Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability
Procedia PDF Downloads 202049 Annotation Ontology for Semantic Web Development
Authors: Hadeel Al Obaidy, Amani Al Heela
Abstract:
The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system.Keywords: semantic web services, software engineering, semantic library, knowledge representation, ontology
Procedia PDF Downloads 1752048 The Effectiveness of Adaptive Difficulty Adjustment in Touch Tablet App on Young Children's Spatial Problem Solving Development
Authors: Chenchen Liu, Jacques Audran
Abstract:
Using tablet apps with a certain educational purpose to promote young children’s cognitive development, is quite common now. Developing an educational app on an Ipad like tablet, especially for a young child (age 3-5) requires an optimal level of challenge to continuously attract children’s attention and obtain an educational effect. Adaptive difficulty adjustment, which could dynamically set the difficulty in the challenge according to children’s performance, seems to be a good solution. Since space concept plays an important role in young children’s cognitive development, we made an experimental comparison in a French kindergarten between one group of 23 children using an educational app ‘Debout Ludo’ with adaptive difficulty settings and another group of 20 children using the previous version of ‘Debout Ludo’ with a classic incremental difficulty adjustment. The experiment results of spatial problem solving indicated that a significantly higher learning outcome was acquired by the young children who used the adaptive version of the app.Keywords: adaptive difficulty, spatial problem solving, tactile tablet, young children
Procedia PDF Downloads 4452047 Towards a Measuring Tool to Encourage Knowledge Sharing in Emerging Knowledge Organizations: The Who, the What and the How
Authors: Rachel Barker
Abstract:
The exponential velocity in the truly knowledge-intensive world today has increasingly bombarded organizations with unfathomable challenges. Hence organizations are introduced to strange lexicons of descriptors belonging to a new paradigm of who, what and how knowledge at individual and organizational levels should be managed. Although organizational knowledge has been recognized as a valuable intangible resource that holds the key to competitive advantage, little progress has been made in understanding how knowledge sharing at individual level could benefit knowledge use at collective level to ensure added value. The research problem is that a lack of research exists to measure knowledge sharing through a multi-layered structure of ideas with at its foundation, philosophical assumptions to support presuppositions and commitment which requires actual findings from measured variables to confirm observed and expected events. The purpose of this paper is to address this problem by presenting a theoretical approach to measure knowledge sharing in emerging knowledge organizations. The research question is that despite the competitive necessity of becoming a knowledge-based organization, leaders have found it difficult to transform their organizations due to a lack of knowledge on who, what and how it should be done. The main premise of this research is based on the challenge for knowledge leaders to develop an organizational culture conducive to the sharing of knowledge and where learning becomes the norm. The theoretical constructs were derived and based on the three components of the knowledge management theory, namely technical, communication and human components where it is suggested that this knowledge infrastructure could ensure effective management. While it is realised that it might be a little problematic to implement and measure all relevant concepts, this paper presents effect of eight critical success factors (CSFs) namely: organizational strategy, organizational culture, systems and infrastructure, intellectual capital, knowledge integration, organizational learning, motivation/performance measures and innovation. These CSFs have been identified based on a comprehensive literature review of existing research and tested in a new framework adapted from four perspectives of the balanced score card (BSC). Based on these CSFs and their items, an instrument was designed and tested among managers and employees of a purposefully selected engineering company in South Africa who relies on knowledge sharing to ensure their competitive advantage. Rigorous pretesting through personal interviews with executives and a number of academics took place to validate the instrument and to improve the quality of items and correct wording of issues. Through analysis of surveys collected, this research empirically models and uncovers key aspects of these dimensions based on the CSFs. Reliability of the instrument was calculated by Cronbach’s a for the two sections of the instrument on organizational and individual levels.The construct validity was confirmed by using factor analysis. The impact of the results was tested using structural equation modelling and proved to be a basis for implementing and understanding the competitive predisposition of the organization as it enters the process of knowledge management. In addition, they realised the importance to consolidate their knowledge assets to create value that is sustainable over time.Keywords: innovation, intellectual capital, knowledge sharing, performance measures
Procedia PDF Downloads 1962046 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals
Authors: Nelomi Anandagoda, Leanne J. Eveson
Abstract:
During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching
Procedia PDF Downloads 1712045 Development and Validation of Research Process for Enhancing Humanities Competence of Medical Students
Authors: S. J. Yune, K. H. Park
Abstract:
The purpose of this study was to examine the validity of the research process for enhancing the humanities competence of the medical students. The research process was developed to be operated as a core subject course of 3 semesters. Among them, the research process for enhancing humanities capacity consisted of humanities and societies (6 teams) and education-psychology (2teams). The subjects of this study were 88-second grade students and 22 professors who participated in the research process. Among them, 13 professors participated in the study of humanities and 37 students. In the validity test, the professors were more likely to have more validity in the research process than the students in all areas of logic (p = .001), influence (p = .037), process (p = .001). The validity of the professor was higher than that of the students. The professors highly evaluated the students' learning outcomes and showed the most frequency to the prize group. As a result of analyzing the agreement between the students and the professors through the Kappa coefficient, the agreement degree of communication and cooperation competence was moderate to .430. Problem-solving ability was .340, which showed a fair degree of agreement. However, other factors showed only a slight degree of agreement of less than .20.Keywords: research process, medical school, humanities competence, validity verification
Procedia PDF Downloads 1952044 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education
Authors: Yu Cheng-Yu
Abstract:
‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.Keywords: social construction, heterogeneity, new media, big data, visual culture art education
Procedia PDF Downloads 2492043 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1562042 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4392041 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes
Authors: Kevin. S. Badni
Abstract:
Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.Keywords: augmented reality, history, motivation, technology
Procedia PDF Downloads 1672040 Usability Assessment of a Bluetooth-Enabled Resistance Exercise Band among Young Adults
Authors: Lillian M. Seo, Curtis L. Petersen, Ryan J. Halter, David Kotz, John A. Batsis
Abstract:
Background: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. The system has the potential to measure home-based exercise interventions, allowing health professionals to monitor compliance. Its feasibility has already been demonstrated in both clinical and field-based settings, but it remained unclear whether the system’s usability persisted upon repeated use. The current study sought to assess the usability of this system and its users’ satisfaction with repeated use by deploying the device among younger adults to gather formative information that can ultimately improve the device’s design for older adults. Methods: A usability study was conducted in which 32 participants used the above system. Participants executed 10 repetitions of four commonly performed exercises: bicep flexion, shoulder abduction, elbow extension, and triceps extension. Each completed three exercise sessions, separated by at least 24 hours to minimize muscle fatigue. At its conclusion, subjects completed an adapted version of the usefulness, satisfaction, and ease (USE) questionnaire – assessing the system across four domains: usability, satisfaction, ease of use, and ease of learning. The 20-item questionnaire examined how strongly a participant agrees with positive statements about the device on a seven-point Likert scale, with one representing ‘strongly disagree’ and seven representing ‘strongly agree.’ Participants’ data were aggregated to calculate mean response values for each question and domain, effectively assessing the device’s performance across different facets of the user experience. Summary force data were visualized using a custom web application. Finally, an optional prompt at the end of the questionnaire allowed for written comments and feedback from participants to elicit qualitative indicators of usability. Results: Of the n=32 participants, 13 (41%) were female; their mean age was 32.4 ± 11.8 years, and no participants had a physical impairment. No usability questions received a mean score < 5 of seven. The four domains’ mean scores were: usefulness 5.66 ± 0.35; satisfaction 6.23 ± 0.06; ease of use 6.25 ± 0.43; and ease of learning 6.50 ± 0.19. Representative quotes of the open-ended feedback include: ‘A non-rigid strap-style handle might be useful for some exercises,’ and, ‘Would need different bands for each exercise as they use different muscle groups with different strength levels.’ General impressions were favorable, supporting the expectation that the device would be a useful tool in exercise interventions. Conclusions: A simple usability assessment of a Bluetooth-enabled resistance exercise band supports a consistent and positive user experience among young adults. This study provides adequate formative data, assuring the next steps can be taken to continue testing and development for the target population of older adults.Keywords: Bluetooth, exercise, mobile health, mHealth, usability
Procedia PDF Downloads 1182039 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model
Authors: Sujay Kotwale, Ramasubba Reddy M.
Abstract:
Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost
Procedia PDF Downloads 1212038 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 922037 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 3562036 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School
Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya
Abstract:
This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education
Procedia PDF Downloads 302035 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios
Authors: Bernabeo R. Alberto
Abstract:
With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety
Procedia PDF Downloads 242034 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1382033 Youths Economic Empowerment through Vocational Agricultural Enterprises (Entrepreneurship) for Sustainable Agriculture in Nigeria: Constraints and Initiatives for Improvement
Authors: Thomas Ogilegwu Orohu
Abstract:
This paper presents agricultural education as a vocational study, an impetus for youths, economic empowerment. The survival of Nigeria’s agriculture rests squarely on the youth who are the farmers and leaders of tomorrow. Hitherto, the teaching and learning of agriculture has proceeded in such a manner that graduates of such programs have failed to make the successful launch into the world of agricultural enterprises (entrepreneurship). Major constraints that predisposed this anomalous situation were identified to include poor policy framework, socio-economic pressures, undue parental and peer influences, improper value orientation and of course, the nature of curricula. In response to the situation, some programs and/or initiatives aimed at inculcating entrepreneurial skills were proposed by this paper with identified target beneficiaries. The initiatives bordered on curricular reorientation that integrate entrepreneurship/enterprise education, retraining of graduates, financial support system among others.Keywords: Program initiatives. vocational agriculture, youths’ empowerment, introduction
Procedia PDF Downloads 3122032 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre
Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar
Abstract:
With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm
Procedia PDF Downloads 2302031 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives
Authors: S. Kawther, C. Marshall
Abstract:
Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed
Procedia PDF Downloads 1702030 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 106