Search results for: learning physical
7278 Competency and Strategy Formulation in Automobile Industry
Authors: Chandan Deep Singh
Abstract:
In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation
Procedia PDF Downloads 3147277 Influence of UV Aging on the Mechanical Properties of Polycarbonate
Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem
Abstract:
Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging
Procedia PDF Downloads 1457276 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 737275 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development
Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo
Abstract:
Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.Keywords: maritime training, oil spill response, simulation, vessel manoeuvring
Procedia PDF Downloads 1767274 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 947273 Effect of Extracorporeal Shock Wave Therapy on Post Burn Scars
Authors: Mahmoud S. Zaghloul, Mohammed M. Khalaf, Wael N. Thabet, Haidy N. Asham
Abstract:
Background. Hypertrophic scarring is a difficult problem for burn patients, and scar management is an essential aspect of outpatient burn therapy. Post-burn pathologic scars involve functional and aesthetic limitations that have a dramatic influence on the patient’s quality of life. The aim was to investigate the use of extracorporeal shock wave therapy (ESWT), which targets the fibroblasts in scar tissue, as an effective modality for scar treatment in burn patients. Subjects and methods: forty patients with post-burn scars were assigned randomly into two equal groups; their ages ranged from 20-45 years. The study group received ESWT and traditional physical therapy program (deep friction massage, stretching exercises). The control group received traditional physical therapy program (deep friction massage, stretching exercises). All groups received two sessions per week for six successful weeks. The data were collected before and after the same period of treatment for both groups. Evaluation procedures were carried out to measure scar thickness using ultrasonography and Vancouver Scar Scale (VSS) was completed before and after treatment. Results: Post-treatment results showed that there was a significant improvement difference in scar thickness in both groups in favor of the study group. Percentage of improvement in scar thickness in the study group was 42.55%, while it was 12.15% in the control group. There was also a significant improvement difference between results obtained using VSS in both groups in favor of the study group. Conclusion: ESWT is effective in management of pathologic post burn scars.Keywords: extracorporeal shock wave therapy, post-burn scars, ultrasonography, Vancouver scar scale
Procedia PDF Downloads 2567272 Query in Grammatical Forms and Corpus Error Analysis
Authors: Katerina Florou
Abstract:
Two decades after coined the term "learner corpora" as collections of texts created by foreign or second language learners across various language contexts, and some years following suggestion to incorporate "focusing on form" within a Task-Based Learning framework, this study aims to explore how learner corpora, whether annotated with errors or not, can facilitate a focus on form in an educational setting. Argues that analyzing linguistic form serves the purpose of enabling students to delve into language and gain an understanding of different facets of the foreign language. This same objective is applicable when analyzing learner corpora marked with errors or in their raw state, but in this scenario, the emphasis lies on identifying incorrect forms. Teachers should aim to address errors or gaps in the students' second language knowledge while they engage in a task. Building on this recommendation, we compared the written output of two student groups: the first group (G1) employed the focusing on form phase by studying a specific aspect of the Italian language, namely the past participle, through examples from native speakers and grammar rules; the second group (G2) focused on form by scrutinizing their own errors and comparing them with analogous examples from a native speaker corpus. In order to test our hypothesis, we created four learner corpora. The initial two were generated during the task phase, with one representing each group of students, while the remaining two were produced as a follow-up activity at the end of the lesson. The results of the first comparison indicated that students' exposure to their own errors can enhance their grasp of a grammatical element. The study is in its second stage and more results are to be announced.Keywords: Corpus interlanguage analysis, task based learning, Italian language as F1, learner corpora
Procedia PDF Downloads 567271 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors
Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar
Abstract:
In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides
Procedia PDF Downloads 1447270 Promoting Open Educational Resources (OER) in Theological/Religious Education in Nigeria
Authors: Miracle Ajah
Abstract:
One of the biggest challenges facing Theological/Religious Education in Nigeria is access to quality learning materials. For instance at the Trinity (Union) Theological College, Umuahia, it was difficult for lecturers to access suitable and qualitative materials for instruction especially the ones that would suit the African context and stimulate a deep rooted interest among the students. Some textbooks written by foreign authors were readily available in the School Library, but were lacking in the College bookshops for students to own copies. Even when the College was able to order some of the books from abroad, it did not usher in the needed enthusiasm expected from the students because they were either very expensive or very difficult to understand during private studies. So it became necessary to develop contextual materials which were affordable and understandable, though with little success. The National Open University of Nigeria (NOUN)’s innovation in the development and sharing of learning resources through its Open Course ware is a welcome development and of great assistance to students. Apart from NOUN students who could easily access the materials, many others from various theological/religious institutes across the nation have benefited immensely. So, the thesis of this paper is that the promotion of open educational resources in theological/religious education in Nigeria would facilitate a better informed/equipped religious leadership, which would in turn impact its adherents for a healthier society and national development. Adopting a narrative and historical approach within the context of Nigeria’s educational system, the paper discusses: educational traditions in Nigeria; challenges facing theological/religious education in Nigeria; and benefits of open educational resources. The study goes further to making recommendations on how OER could positively influence theological/religious education in Nigeria. It is expected that theologians, religious educators, and ODL practitioners would find this work very useful.Keywords: OER, theological education, religious education, Nigeria
Procedia PDF Downloads 3487269 The Use of Spirulina during Aerobic Exercise on the Performance of Immune and Consumption Indicators (A Case Study: Young Men After Physical Training)
Authors: Vahab Behmanesh
Abstract:
One of the topics that has always attracted the attention of sports medicine and sports science experts is the positive or negative effect of sports activities on the functioning of the body's immune system. In the present research, a course of aerobic running with spirulina consumption has been studied on the maximum oxygen consumption and the performance of some indicators of the immune system of men who have trained after one session of physical activity. In this research, 50 trained students were studied randomly in four groups, spirulina- aerobic, spirulina, placebo- aerobic, and control. In order to test the research hypotheses, one-way statistical method of variance (ANOVA) was used considering the significance level of a=0.005 and post hoc test (LSD). A blood sample was taken from the participants in the first stage test in fasting and resting state immediately after Bruce's maximal test on the treadmill until complete relaxation was reached, and their Vo2max value was determined through the aforementioned test. The subjects of the spirulina-aerobic running and placebo-aerobic running groups took three 500 mg spirulina and 500 mg placebo pills a day for six weeks and ran three times a week for 30 minutes at the threshold of aerobic stimulation. The spirulina and placebo groups also consumed spirulina and placebo tablets in the above method for six weeks. Then they did the same first stage test as the second stage test. Blood samples were taken to measure the number of CD4+, CD8+, NK, and the ratio of CD4+ to CD8+ on four occasions before and after the first and second stage tests. The analysis of the findings showed that: aerobic running and spirulina supplement alone increase Vo2max. Aerobic running and consumption of spirulina increases Vo2max more than other groups (P<0.05), +CD4 and hemoglobin of the spirulina-aerobic running group was significantly different from other groups (P=0.002), +CD4 of the groups together There was no significant difference, NK increased in all groups, the ratio of CD4+ to CD8+ between the groups had a significant difference (P=0.002), the ratio of CD4+ to CD8+ in the spirulina- aerobic group was lower than the spirulina and placebo groups. All in all, it can be concluded that the supplement of spirulina and aerobic exercise may increase Vo2max and improve safety indicators.Keywords: spirulina (Q2), hemoglobin (Q3), aerobic exercise (Q3), residual activity (Q2), CD4+ to CD8+ ratio (Q3)
Procedia PDF Downloads 1287268 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm
Authors: Shafait Hussain Ali
Abstract:
Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions
Procedia PDF Downloads 1107267 The Attitude of Students towards the Use of the Social Networks in Education
Authors: Abdulmjeid Aljerawi
Abstract:
This study aimed to investigate the students' attitudes towards the use of social networking in education. Due to the nature of the study, and on the basis of its problem, objectives, and questions, the researcher used the descriptive approach. An appropriate questionnaire was prepared and validity and reliability were ensured. The questionnaire was then applied to the study sample of 434 students from King Saud University.Keywords: social networks, education, learning, students
Procedia PDF Downloads 2837266 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’
Authors: Riin Seema
Abstract:
Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.Keywords: competency, counseling, self-efficacy, teacher students
Procedia PDF Downloads 1497265 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective
Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar
Abstract:
There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts
Procedia PDF Downloads 1207264 Communication in Inclusive Education: A Qualitative Study in Poland
Authors: Klara Królewiak-Detsi, Anna Orylska, Anna Gorgolewska, Marta Boczkowska, Agata Graczykowska
Abstract:
This study investigates the communication between students and teachers in inclusive education in Poland. Specifically, we examine the communication and interaction of students with special educational needs during online learning compared to traditional face-to-face instruction. Our research questions are (1) how children with special educational needs communicate with their teachers and peers during online learning, and (2) what strategies can improve their communication skills. We conducted five focus groups with: (1) 55 children with special educational needs, (2) 65 typically developing pupils, (3) 28 professionals (psychologists and special education therapists), (4) 16 teachers, and (5) 16 parents of children with special educational needs. Our analysis focused on primary schools and used thematic analysis according to the 6-step procedure of Braun and Clarke. Our findings reveal that children with disabilities faced more difficulties communicating and interacting with others online than in face-to-face lessons. The online tools used for education were not adapted to the needs of children with disabilities, and schools lacked clear guidelines on how to pursue inclusive education online. Based on the results, we offer recommendations for online communication training and tools that are dedicated to children with special educational needs. Additionally, our results demonstrate that typically developing pupils are better in interpersonal relations and more often and effectively use social support. Children with special educational needs had similar emotional and communication challenges compared to their typically developing peers. In conclusion, our study highlights the importance of providing adequate support for the online education of children with special educational needs in inclusive classrooms.Keywords: Inclusive education, Special educational needs, Social skills development, Online communication
Procedia PDF Downloads 1367263 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration
Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu
Abstract:
Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery
Procedia PDF Downloads 1377262 Associations of the FTO Gene Polymorphism with Obesity and Metabolic Syndrome in Lithuanian Adult Population
Authors: Alina Smalinskiene Janina Petkeviciene, Jurate Klumbiene, Vilma Kriaucioniene, Vaiva Lesauskaite
Abstract:
The worldwide prevalence of obesity has been increasing dramatically in the last few decades, and Lithuania is no exception. In 2012, every fifth adult (19% of men and 20.5 % of women) was obese and every third was overweight Association studies have highlighted the influence of SNPs in obesity, with particular focus on FTO rs9939609. Thus far, no data on the possible association of this SNP to obesity in the adult Lithuanian population has been reported. Here, for the first time, we demonstrate an association between the FTO rs9939609 homozygous AA genotype and increased BMI when compared to homozygous TT. Furthermore, a positive association was determined between the FTO rs9939609 variant and risk of metabolic syndrome. Background: This study aimed to examine the associations between the fat mass and obesity associated (FTO) gene rs9939609 variant with obesity and metabolic syndrome in Lithuanian adult population. Materials and Methods: A cross-sectional health survey was carried out in randomly selected municipalities of Lithuania. The random sample was obtained from lists of 25–64 year-old inhabitants. The data from 1020 subjects were analysed. The rs9939609 SNP of the FTO gene was assessed using TaqMan assays (Applied Biosystems, Foster City, CA, USA). The Applied Biosystems 7900HT Real-Time Polymerase Chain Reaction System was used for detecting the SNPs. Results: The carriers of the AA genotype had the highest mean values of BMI and waist circumference (WC) and the highest risk of obesity. Interactions ‘genotype x age’ and ‘genotype x physical activity’ in determining BMI and WC were shown. Neither lipid and glucose levels, nor blood pressure were associated with the rs9939609 independently of BMI. In the age group of 25-44 years, association between the FTO genotypes and metabolic syndrome was found. Conclusion: The FTO rs9939609 variant was significantly associated with BMI and WC, and with the risk of obesity in Lithuanian population. The FTO polymorphism might have a greater influence on weight status in younger individuals and in subjects with a low level of physical activity.Keywords: obesity metabolic syndrome, FTO gene, polymorphism, Lithuania
Procedia PDF Downloads 4337261 The Effect of Sexual Assault on Sport Participation Trajectories from Adolescence through Young Adulthood
Authors: Chung Gun Lee
Abstract:
Objectives: Certain life change events were shown to have strong effects on physical activity-related behavior, but more research is needed to investigate the longer-term effects of different life change events on physical activity-related behaviors. The purpose of this study is to examine the effect of experiencing physically or non-physically forced sexual activity on sports participation from adolescence to young adulthood. Methods: This study used the National Longitudinal Study of Adolescent Health (Add Health) data. Group-based trajectory modeling was utilized to examine the effect of experiencing sexual assault on trajectories of sports participation from adolescence to young adulthood. Results: Male participants were divided into three trajectory groups (i.e., Low-stable, High-decreasing, and High-stable) and female participants were divided into two trajectory groups (i.e., Low-stable and High-decreasing). The main finding of this study is that women who experienced non-physically forced sexual activity significantly decreases sports participation throughout the trajectory in ‘High-decreasing group.’ The effect of non-physically forced sexual activity on women’s sports participation was considerably weakened and became insignificant after including psychological depression in the model as a potential mediator. Discussion: Special attention should be paid to sport participation among women victims of non-physically forced sexual activity. Further studies are needed to examine other potential mediators in addition to psychological depression when examining the effect of non-physically forced sexual activity on sport participation in women.Keywords: adolescent, group-based trajectory modeling, sexual assault, young adult
Procedia PDF Downloads 1657260 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects
Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar
Abstract:
In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties
Procedia PDF Downloads 4347259 Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory
Authors: Liu Canqi, Zeng Junsheng
Abstract:
This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting.Keywords: traffic field, social economics, traffic mass, bottleneck, deceleration delay
Procedia PDF Downloads 717258 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation
Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher
Abstract:
The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.Keywords: simulation, SSC, teaching, medical students
Procedia PDF Downloads 1327257 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1767256 Mathematics Professional Development: Uptake and Impacts on Classroom Practice
Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier
Abstract:
Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning
Procedia PDF Downloads 1267255 Stuck Spaces as Moments of Learning: Uncovering Threshold Concepts in Teacher Candidate Experiences of Teaching in Inclusive Classrooms
Authors: Joy Chadwick
Abstract:
There is no doubt that classrooms of today are more complex and diverse than ever before. Preparing teacher candidates to meet these challenges is essential to ensure the retention of teachers within the profession and to ensure that graduates begin their teaching careers with the knowledge and understanding of how to effectively meet the diversity of students they will encounter. Creating inclusive classrooms requires teachers to have a repertoire of effective instructional skills and strategies. Teachers must also have the mindset to embrace diversity and value the uniqueness of individual students in their care. This qualitative study analyzed teacher candidates' experiences as they completed a fourteen-week teaching practicum while simultaneously completing a university course focused on inclusive pedagogy. The research investigated the challenges and successes teacher candidates had in navigating the translation of theory related to inclusive pedagogy into their teaching practice. Applying threshold concept theory as a framework, the research explored the troublesome concepts, liminal spaces, and transformative experiences as connected to inclusive practices. Threshold concept theory suggests that within all disciplinary fields, there exists particular threshold concepts that serve as gateways or portals into previously inaccessible ways of thinking and practicing. It is in these liminal spaces that conceptual shifts in thinking and understanding and deep learning can occur. The threshold concept framework provided a lens to examine teacher candidate struggles and successes with the inclusive education course content and the application of this content to their practicum experiences. A qualitative research approach was used, which included analyzing twenty-nine course reflective journals and six follow up one-to-one semi structured interviews. The journals and interview transcripts were coded and themed using NVivo software. Threshold concept theory was then applied to the data to uncover the liminal or stuck spaces of learning and the ways in which the teacher candidates navigated those challenging places of teaching. The research also sought to uncover potential transformative shifts in teacher candidate understanding as connected to teaching in an inclusive classroom. The findings suggested that teacher candidates experienced difficulties when they did not feel they had the knowledge, skill, or time to meet the needs of the students in the way they envisioned they should. To navigate the frustration of this thwarted vision, they relied on present and previous course content and experiences, collaborative work with other teacher candidates and their mentor teachers, and a proactive approach to planning for students. Transformational shifts were most evident in their ability to reframe their perceptions of children from a deficit or disability lens to a strength-based belief in the potential of students. It was evident that through their course work and practicum experiences, their beliefs regarding struggling students shifted as they saw the value of embracing neurodiversity, the importance of relationships, and planning for and teaching through a strength-based approach. Research findings have implications for teacher education programs and for understanding threshold concepts theory as connected to practice-based learning experiences.Keywords: inclusion, inclusive education, liminal space, teacher education, threshold concepts, troublesome knowledge
Procedia PDF Downloads 827254 Parents’ Perspectives on After-School Educational Service from a Cross-Cultural Background: A Comparative Semi-Structured Interview Approach Based in China and Ireland
Authors: Xining Wang
Abstract:
After-school educational service has been proven that it could benefit children’s academic performance, socio-emotional skills, and physical health level. However, there is little research demonstrating parents’ perspectives on the choice of after-school educational service from a level of cross-cultural backgrounds. China and Ireland are typical representatives of collectivist countries (e.g., estimated individualism score is 20) and individualist countries (e.g., estimated individualism score is 70) according to Hofstede's cultural dimensions theory. Living in countries with distinguished cultural backgrounds, there is an evident discrepancy in parents’ attitudes towards domestic after-school education and parents’ motivations for choosing after-school educational services. Through conducting a semi-structured interview with 15 parents from China and 15 parents from Ireland, using thematic analysis software (ATLAS) to extract the key information, and applying a comparative approach to process data analysis; results present polarization of Chinese and Irish parents' perspectives and motivations on after-school educational service. For example, Chinese parents tend to view after-school education as a complement to school education. It is a service they purchased for their children to acquire extra knowledge and skills so that they could adapt to the highly competitive educational setting. Given the fact that children’s education is a priority for Chinese families, most parents believe that their children would succeed in the future through massive learning. This attitude reflects that Chinese parents are more likely to apply authoritarian parenting methods and having a strong expectations for their children. Conversely, Irish parents' choice of after-school educational service is a consideration that primarily based on their own situation, secondly, for their family. For instance, with the expansion of the labor market, there is a change in household structure. Irish mothers are more likely to seek working opportunities instead of looking after the family. Irish parents view that after-school educational service is an essential need for themselves and a beneficial component for their family due to the external pressure (e.g., the growing work intensity and extended working hours, increasing numbers of separated families, as well as parents’ pursuit of higher education and promotion). These factors are fundamental agents that encourage Irish parents to choose after-school educational services. To conclude, the findings could provide readers with a better understanding of parents’ disparate and contrasting perspectives on after-school educational services from a multi-culture level.Keywords: after-school, China, family studies, Ireland, parents
Procedia PDF Downloads 1877253 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class
Authors: Marta Lisowska
Abstract:
The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence
Procedia PDF Downloads 1037252 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 787251 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3907250 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1267249 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 114