Search results for: NARX (Nonlinear Autoregressive Exogenous Model)
12245 Electronic Government Services Adoption from Multi-Nationalities Perspectives
Authors: Isaac Kofi Mensah, Jianing Mi, Cheng Feng
Abstract:
Electronic government is the application of Information and Communication Technologies (ICTs) by the government to improve public service delivery to citizens and businesses. The purpose of this study is to investigate factors influencing the adoption and use of e-government services from different nationalities perspectives. The Technology Acceptance Model (TAM) will be used as the theoretical framework for the study. A questionnaire would be developed and administered to 500 potential respondents who are students from different nationalities in China. Predictors such as perceived usefulness, perceived ease of use, computer self-efficacy, trust in both the internet and government, social influence and perceived service quality would be examined with regard to their impact on the intention to use e-government services. This research is currently at the design and implementation stage. The completion of this study will provide useful insights into understanding factors impacting the decision to use e-government services from a cross and multi nationalities perspectives.Keywords: different nationalities, e-government, e-government services, technology acceptance model (TAM)
Procedia PDF Downloads 43512244 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning
Procedia PDF Downloads 41212243 The Effect of Electronic Platform Service Usage on Customer Satisfaction and WOM
Authors: Shui Lien Chen, Yi-Fen Tsai, Jim Shih-Chiao Chin
Abstract:
—In this study, using Chunghwa Telecom as a case. The company accounted for the highest proportion of the telecommunications company in Taiwan. First, this paper would like to understand the effect of convenience performance on perceived ease of use and perceived usefulness. Further, the perceived ease of use and perceived usefulness of Technology Acceptance Model (TAM) are adopted as the factors on the company's brand perception. Afterward, the brand perception influence on customer satisfaction, and finally whether producing a good reputation and recommendation are tested. The study participants are people who have used electronic platform service of Chunghwa Telecom. A total of 478 valid questionnaires were used and AMOS 20.0 statistical software programs were adopted to analyze.Keywords: technology acceptance model, brand association, brand awareness, brand attachment, customer satisfaction, word-of-mouth (WOM)
Procedia PDF Downloads 27812242 Testing Chat-GPT: An AI Application
Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi
Abstract:
ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.Keywords: artificial Inelegance, chatGPT, open AI, NLP
Procedia PDF Downloads 8112241 A Survey on the Requirements of University Course Timetabling
Authors: Nurul Liyana Abdul Aziz, Nur Aidya Hanum Aizam
Abstract:
Course timetabling problems occur every semester in a university which includes the allocation of resources (subjects, lecturers and students) to a number of fixed rooms and timeslots. The assignment is carried out in a way such that there are no conflicts within rooms, students and lecturers, as well as fulfilling a range of constraints. The constraints consist of rules and policies set up by the universities as well as lecturers’ and students’ preferences of courses to be allocated in specific timeslots. This paper specifically focuses on the preferences of the course timetabling problem in one of the public universities in Malaysia. The demands will be considered into our existing mathematical model to make it more generalized and can be used widely. We have distributed questionnaires to a number of lecturers and students of the university to investigate their demands and preferences for their desired course timetable. We classify the preferences thus converting them to construct one mathematical model that can produce such timetable.Keywords: university course timetabling problem, integer programming, preferences, constraints
Procedia PDF Downloads 37212240 Skills Development: The Active Learning Model of a French Computer Science Institute
Authors: N. Paparisteidi, D. Rodamitou
Abstract:
This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.Keywords: active learning, blended learning, higher education, skills development
Procedia PDF Downloads 10712239 Increase of Energy Efficiency by Means of Application of Active Bearings
Authors: Alexander Babin, Leonid Savin
Abstract:
In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.Keywords: active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing
Procedia PDF Downloads 28612238 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 7312237 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 10712236 The Role of Social Influences and Cultural Beliefs on Perceptions of Postpartum Depression among Mexican Origin Mothers in San Diego
Authors: Mireya Mateo Gomez
Abstract:
The purpose of this study was to examine the perceptions first-generation Mexican origin mothers living in San Diego have on postpartum depression (PPD), with a special focus on social influences and cultural beliefs towards those meanings. This study also aimed to examine possible PPD help-seeking behaviors that first-generation Mexican origin mothers can perform. The Health Belief Model (HBM) and Social Ecological Model (SEM) were the guiding theoretical frameworks for this study. Data for this study were collected from three focus groups, four in-depth interviews, and the distribution of an acculturation survey (ARSMA II). There were a total of 15 participants, in which participant’s mean age was 45, and the mean age migrated to the United States being 22. Most participants identified as being married, born in Southern or Western Mexico, and with a strong Mexican identity in relation to the ARSMA survey. Participants identified four salient PPD perceptions corresponding to the interpersonal level of SEM. These four main perceptions were: 1) PPD affecting the identity of motherhood; 2) PPD being a natural part of a mother’s experience but mitigated by networks; 3) PPD being a U.S. phenomenon due to family and community breakdown; and 4) natural remedies as a preferred PPD treatment. In regard to themes relating to help seeking behaviors, participants identified seven being: 1) seeking help from immediate family members; 2) practicing home remedies; 3) seeking help from a medical professional; 4) obtaining help from a clinic or organization; 5) seeking help from God; 6) participating in PPD support groups; and 7) talking to a friend. It was evident in this study that postpartum depression is not a well discussed topic within the Mexican immigrant population. In relation to the role culture and social influences have on PPD perceptions, most participants shared hearing or learning about PPD from their family members or friends. Participants also stated seeking help from family members if diagnosed with PPD and seeking out home remedies. This study as well provides suggestions to increase the awareness of PPD among the Mexican immigrant community.Keywords: cultural beliefs, health belief model, Mexican origin mothers, perceptions, postpartum depression social ecological model
Procedia PDF Downloads 15812235 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests
Authors: Huseyin Guler, Cigdem Kosar
Abstract:
The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.Keywords: bridge estimators, HEGY test, model selection, seasonal unit root
Procedia PDF Downloads 34312234 Cybersecurity and Governance for Humanitarian Work: An Approach for Addressing Security Risks
Authors: Rossouw De Bruin, Sebastiaan H. Von Solms
Abstract:
The state of national security is an evolving concern. Companies, organizations, governments, states and individuals are aware of the security of their information and their assets however, they may not always be aware of the risks present. These risks are not only limited to non-existence of security procedures. Existing security can be severely flawed, especially if there is non-conformance towards policies, practices and procedures. When looking at humanitarian actions, we can easily identify these flaws. Unfortunately, humanitarian aid has to compete with factors from within the states, countries and continents they are working in. Furthermore, as technology improves, so does our connectivity to the internet and the way in which we use the internet. However, there are times when security is overlooked and humanitarian agencies are some of the agencies that do not always take security into consideration. The purpose of this paper will be to introduce the importance of cybersecurity and cybersecurity governance with respect to humanitarian work. We will also introduce and briefly discuss a model that can be used by humanitarian agencies to assess, manage and maintain their cybersecurity efforts.Keywords: humanities, cybersecurity, cybersecurity governance, maturity, cybersecurity maturity, maturity model
Procedia PDF Downloads 27012233 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 5912232 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management
Authors: Berk Ecer, Ebru Akcapinar Sezer
Abstract:
Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach
Procedia PDF Downloads 14212231 Evaluating Psychologist Practice Competencies through Multisource Feedback: An International Research Design
Authors: Jac J. W. Andrews, James B. Hale
Abstract:
Effective practicing psychologists require ongoing skill development that is constructivist and recursive in nature, with mentor, colleague, co-worker, and patient feedback critical to successful acquisition and maintenance of professional competencies. This paper will provide an overview of the nature and scope of psychologist skill development through multisource feedback (MSF) or 360 degree evaluation, present a rationale for its use for assessing practicing psychologist performance, and advocate its use in psychology given the demonstrated model utility in other health professions. The paper will conclude that an international research design is needed to assess the feasibility, reliability, and validity of MSF system ratings intended to solicit feedback from mentors, colleagues, coworkers, and patients about psychologist competencies. If adopted, the MSF model could lead to enhanced skill development that fosters patient satisfaction within and across countries.Keywords: psychologist, multisource feedback, psychologist competency, professionalism
Procedia PDF Downloads 45012230 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics
Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi
Abstract:
We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling
Procedia PDF Downloads 28312229 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections
Authors: Jackeline Kafie-Martinez, Peter B. Keating
Abstract:
A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges
Procedia PDF Downloads 28212228 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity
Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta
Abstract:
During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling
Procedia PDF Downloads 34512227 Disruption Coordination of Supply Chain with Loss-Averse Retailer Under Buy-Back Contract
Abstract:
This paper aims to investigate a two stage supply chain of one leading supplier and one following retailer that experiences two factors perturbation out of supplier's production cost, retailer's marginal cost and retail price in stochastic demand environment. Granted that risk neutral condition has long been discussed, little attention has been given to disruptions under the premise of risk neutral supplier and risk aversion retailer. We establish the optimal order quantity and revealed the profit distribution coefficient in risk-neutral static model, make adjustment under disruption scenario, and then select utility function method for risk aversion model. Using buy-back contract policy, the improvement of parameters can achieve channel coordination where Pareto optimal is realized.Keywords: supply chain coordination, disruption management, buy-back contract, lose aversion
Procedia PDF Downloads 33312226 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy
Authors: Sriram Kashyap Prasad, Ionut Florescu
Abstract:
This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning
Procedia PDF Downloads 15512225 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 10312224 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain
Authors: Joseph Salim
Abstract:
This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain
Procedia PDF Downloads 9812223 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance
Authors: R. Di Lorenzo, S. Laneri, A. Sacchi
Abstract:
Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis
Procedia PDF Downloads 12912222 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up
Procedia PDF Downloads 32512221 Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin
Authors: Zuliziana Suif, Nordila Ahmad, Sengheng Hul
Abstract:
This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management.Keywords: climate change, suspended sediment, Mekong River Basin, GCMs
Procedia PDF Downloads 44512220 General Mathematical Framework for Analysis of Cattle Farm System
Authors: Krzysztof Pomorski
Abstract:
In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations
Procedia PDF Downloads 14812219 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models
Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun
Abstract:
Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).Keywords: generalized linear models, risk factor, pure premium, regression model
Procedia PDF Downloads 46812218 Designing of a Micromechanical Gyroscope with Enhanced Bandwidth
Authors: Bator Shagdyrov, Elena Zorina, Tamara Nesterenko
Abstract:
The aim of the research was to develop a design of micromechanical gyroscope, which will be used in the automotive industry, safety systems and anti-lock braking system. The research resulted in improvement of one of the technical parameters – bandwidth. In the process of mass production of micromechanical sensors, problems occurred with their use. One of the problems was a narrow bandwidth typical for the gyroscopes with a high-quality factor. A constructive way of increasing bandwidth is to use multimass systems via secondary oscillations axis. When constructing, the main task was to choose the frequency - phases and antiphases as close to each other as possible, and set the frequency of the primary oscillation evenly between them. Investigations are carried out using the T-Flex CAD finite element program and T-Flex ANALYSIS support package. The results obtained are planned to use in the future for the production of an experimental model of development and testing in practice of characteristics derived by theoretical means.Keywords: bandwidth, inertial mass, mathematical model, micromechanical gyroscope, micromechanics
Procedia PDF Downloads 26112217 Developing and integrated Clinical Risk Management Model
Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei
Abstract:
Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.Keywords: failure modes and effective analysis, risk management, root cause analysis, model
Procedia PDF Downloads 25212216 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 415