Search results for: Geographic information systems (GIS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18730

Search results for: Geographic information systems (GIS)

13270 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband

Procedia PDF Downloads 140
13269 Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study

Authors: R. Güçlü, E. Küçüksakarya

Abstract:

Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students.

Keywords: color term, gender, mental lexicon, word association task

Procedia PDF Downloads 134
13268 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.

Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing

Procedia PDF Downloads 115
13267 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach

Authors: Melissa C. LaDuke

Abstract:

The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and spoke to either teacher-centered or student-centered educational practices within Defense Acquisitions University. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses, including the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.

Keywords: educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality

Procedia PDF Downloads 109
13266 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management

Authors: Hasan Ustun Basaran

Abstract:

Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.

Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency

Procedia PDF Downloads 181
13265 APP-Based Language Teaching Using Mobile Response System in the Classroom

Authors: Martha Wilson

Abstract:

With the peak of Computer-Assisted Language Learning slowly coming to pass and Mobile-Assisted Language Learning, at times, a bit lacking in the communicative department, we are now faced with a challenging question: How can we engage the interest of our digital native students and, most importantly, sustain it? As previously mentioned, our classrooms are now experiencing an influx of “digital natives” – people who have grown up using and having unlimited access to technology. While modernizing our curriculum and digitalizing our classrooms are necessary in order to accommodate this new learning style, it is a huge financial burden and a massive undertaking for language institutes. Instead, opting for a more compact, simple, yet multidimensional pedagogical tool may be the solution to the issue at hand. This paper aims to give a brief overview into an existing device referred to as Student Response Systems (SRS) and to expand on this notion to include a new prototype of response system that will be designed as a mobile application to eliminate the need for costly hardware and software. Additionally, an analysis into recent attempts by other institutes to develop the Mobile Response System (MRS) and customer reviews of the existing MRSs will be provided, as well as the lessons learned from those projects. Finally, while the new model of MRS is still in its infancy stage, this paper will discuss the implications of incorporating such an application as a tool to support and to enrich traditional techniques and also offer practical classroom applications with the existing response systems that are immediately available on the market.

Keywords: app, clickers, mobile app, mobile response system, student response system

Procedia PDF Downloads 372
13264 Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces

Authors: Dong Il Shim, Geehong Choi, Donghwi Lee, Namkyu Lee, Hyung Hee Cho

Abstract:

Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces.

Keywords: boiling heat transfer, wettability, critical heat flux, heat transfer coefficient

Procedia PDF Downloads 341
13263 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 372
13262 Geometric Optimization of Catalytic Converter

Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar

Abstract:

The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.

Keywords: catalytic converter, emission control, reactor systems, substrate for emission control

Procedia PDF Downloads 908
13261 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 220
13260 Service Blueprinting: A New Application for Evaluating Service Provision in the Hospice Sector

Authors: L. Sudbury-Riley, P. Hunter-Jones, L. Menzies, M. Pyrah, H. Knight

Abstract:

Just as manufacturing firms aim for zero defects, service providers strive to avoid service failures where customer expectations are not met. However, because services comprise unique human interactions, service failures are almost inevitable. Consequently, firms focus on service recovery strategies to fix problems and retain their customers for the future. Because a hospice offers care to terminally ill patients, it may not get the opportunity to correct a service failure. This situation makes the identification of what hospice users really need and want, and to ascertain perceptions of the hospice’s service delivery from the user’s perspective, even more important than for other service providers. A well-documented and fundamental barrier to improving end-of-life care is a lack of service quality measurement tools that capture the experiences of user’s from their own perspective. In palliative care, many quantitative measures are used and these focus on issues such as how quickly patients are assessed, whether they receive information leaflets, whether a discussion about their emotional needs is documented, and so on. Consequently, quality of service from the user’s perspective is overlooked. The current study was designed to overcome these limitations by adapting service blueprinting - never before used in the hospice sector - in order to undertake a ‘deep-dive’ to examine the impact of hospice services upon different users. Service blueprinting is a customer-focused approach for service innovation and improvement, where the ‘onstage’ visible service user and provider interactions must be supported by the ‘backstage’ employee actions and support processes. The study was conducted in conjunction with East Cheshire Hospice in England. The Hospice provides specialist palliative care for patients with progressive life-limiting illnesses, offering services to patients, carers and families via inpatient and outpatient units. Using service blueprinting to identify every service touchpoint, in-depth qualitative interviews with 38 in-patients, outpatients, visitors and bereaved families enabled a ‘deep-dive’ to uncover perceptions of the whole service experience among these diverse users. Interviews were recorded and transcribed, and thematic analysis of over 104,000 words of data revealed many excellent aspects of Hospice service. Staff frequently exceed people’s expectations. Striking gratifying comparisons to hospitals emerged. The Hospice makes people feel safe. Nevertheless, the technique uncovered many areas for improvement, including serendipity of referrals processes, the need for better communications with external agencies, improvements amid the daunting arrival and admissions process, a desperate need for more depression counselling, clarity of communication pertaining to actual end of life, and shortcomings in systems dealing with bereaved families. The study reveals that the adapted service blueprinting tool has major advantages of alternative quantitative evaluation techniques, including uncovering the complex nature of service user’s experiences in health-care service systems, highlighting more fully the interconnected configurations within the system and making greater sense of the impact of the service upon different service users. Unlike other tools, this in-depth examination reveals areas for improvement, many of which have already been implemented by the Hospice. The technique has potential to improve experiences of palliative and end-of-life care among patients and their families.

Keywords: hospices, end-of-life-care, service blueprinting, service delivery

Procedia PDF Downloads 196
13259 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories

Procedia PDF Downloads 144
13258 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 410
13257 The Issue of Affordability in Housing and Implications for the Regional Planning of Drainage Infrastructure: A Case of Affordability as Part of Inclusive Decision Making

Authors: Kwadwo Afari Gyan

Abstract:

Cities are growing at unprecedented levels. Meanwhile, governments in the Global South are already overwhelmed by this growth and are unable to provide infrastructure proactively as expected. As a result, urban residents resort to providing their own infrastructure, such as drainage systems, as part of self-built housing development. Their small-scale, incremental housing practices, which often represent the formation of dense and diverse housing types, styles, and ages, have been identified to affect the planning of drainage systems at the regional scale. Such developments reflect the varied, affordable responses as part of a collective effort to curb regional problems, specifically flooding in this case. However, while some are included in this collective action, others are excluded as they are unable to afford to be included. This phenomenon, in addition to the formation of new autonomous localities, has led to challenges in mitigating flooding and has affected resilience to climate change. Using a qualitative approach, this paper explores how the mismatch between housing development, which occurs at an individual scale, and drainage infrastructure, which is provided at a regional scale, affects a regional effort to mitigate flooding in Tema, Ghana. It seeks to explore and reveal a relationship between affordability and inclusiveness. It also explores how density and diversity influence public infrastructure provision and their connection with affordability.

Keywords: climate change, affordability, inclusivity, equity, contextualization, regionalism

Procedia PDF Downloads 102
13256 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 473
13255 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 59
13254 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 72
13253 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 236
13252 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients

Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.

Keywords: fever, trauma, mortality, emergency

Procedia PDF Downloads 380
13251 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies

Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni

Abstract:

Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.

Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors

Procedia PDF Downloads 186
13250 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study

Authors: Rosalie Menon, Angela Reid

Abstract:

Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.

Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation

Procedia PDF Downloads 174
13249 The Rise of Blue Water Navy and its Implication for the Region

Authors: Riddhi Chopra

Abstract:

Alfred Thayer Mahan described the sea as a ‘great common,’ which would serve as a medium for communication, trade, and transport. The seas of Asia are witnessing an intriguing historical anomaly – rise of an indigenous maritime power against the backdrop of US domination over the region. As China transforms from an inward leaning economy to an outward-leaning economy, it has become increasingly dependent on the global sea; as a result, we witness an evolution in its maritime strategy from near seas defense to far seas deployment strategies. It is not only patrolling the international waters but has also built a network of civilian and military infrastructure across the disputed oceanic expanse. The paper analyses the reorientation of China from a naval power to a blue water navy in an era of extensive globalisation. The actions of the Chinese have created a zone of high alert amongst its neighbors such as Japan, Philippines, Vietnam and North Korea. These nations are trying to align themselves so as to counter China’s growing brinkmanship, but China has been pursuing claims through a carefully calibrated strategy in the region shunning any coercive measures taken by other forces. If China continues to expand its maritime boundaries, its neighbors – all smaller and weaker Asian nations would be limited to a narrow band of the sea along its coastlines. Hence it is essential for the US to intervene and support its allies to offset Chinese supremacy. The paper intends to provide a profound analysis over the disputes in South China Sea and East China Sea focusing on Philippines and Japan respectively. Moreover, the paper attempts to give an account of US involvement in the region and its alignment with its South Asian allies. The geographic dynamics is said the breed a national coalition dominating the strategic ambitions of China as well as the weak littoral states. China has conducted behind the scenes diplomacy trying to persuade its neighbors to support its position on the territorial disputes. These efforts have been successful in creating fault lines in ASEAN thereby undermining regional integrity to reach a consensus on the issue. Chinese diplomatic efforts have also forced the US to revisit its foreign policy and engage with players like Cambodia and Laos. The current scenario in the SCS points to a strong Chinese hold trying to outspace all others with no regards to International law. Chinese activities are in contrast with US principles like Freedom of Navigation thereby signaling US to take bold actions to prevent Chinese hegemony in the region. The paper ultimately seeks to explore the changing power dynamics among various claimants where a rival superpower like US can pursue the traditional policy of alliance formation play a decisive role in changing the status quo in the arena, consequently determining the future trajectory.

Keywords: China, East China Sea, South China Sea, USA

Procedia PDF Downloads 245
13248 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 675
13247 Institutional Design for Managing Irrigation Problems: A Case Study of Farmers'- and Agency-Managed Irrigation Systems of Nepal

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is an important aspect in efficient water resource management. In Nepal, the water supply in both farmers’- and agency-managed irrigation systems has become sub-standard because of the weak institutional framework. This study characterizes both forms of the schemes and links existing institution and governance of the schemes with its performance with reference to cost recovery, maintenance of the schemes and water distribution throughout the schemes. For this, two types of surveys were conducted. A management survey of ten farmers’-managed and five agency-managed schemes of Chitwan valley and its periphery was done. Also, a farm survey comprising 25 farmers from each of head, middle and tail regions of both schemes; Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmers’-managed) of Chitwan Valley as a case study was conducted. The results showed that cost recovery of agency-managed schemes in 2015 was less than two percent whereas service fee collection rate in farmers’-managed schemes was nearly 2/3rd that triggered poor maintenance of the schemes and unequal distribution of water throughout the schemes. Also, the institution on practice is unable to create any incentives for farmers for economical use of water as well as willingness to pay for its use. This, thus, compels the need of refined institutional framework which has been suggested in this paper aiming to improve the cost recovery and better water distribution throughout the irrigation schemes.

Keywords: cost recovery, governance, institution, schemes' performance

Procedia PDF Downloads 263
13246 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 95
13245 Ambient Notifications and the Interruption Effect

Authors: Trapond Hiransalee

Abstract:

The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.

Keywords: HCI, interaction, interaction design, usability testing

Procedia PDF Downloads 411
13244 Experimental Investigation of Powder Holding Capacities of H13 and H14 Class Activated Carbon Filters Based on En 779 Standard

Authors: Abdullah Işıktaş, Kevser Dincer

Abstract:

The use of HEPA filters for air conditioning systems in clean rooms tends to increase progressively in pharmaceutical, food stuff industries and in hospitals. There are two standards widely used for HEPA filters; the EN 1822 standards published by the European Union, CEN (European Committee for Standardization) and the US based IEST standard (Institute of Environmental Sciences and Technology. Both standards exhibit some differences in the definitions of efficiency and its measurement methods. While IEST standard defines efficiency at the grit diameter of 0.3 µm, the EN 1822 standard takes MPPS (Most Penetrating Particle Size) as the basis of its definition. That is, the most difficult grit size to catch up. On the other hand, while IEST suggests that photometer and grit counters be used for filter testing, in EN 1822 standard, only the grit (grain) counters are recommended for that purpose. In this study, powder holding capacities of H13 and H14 grade materials under the EN 779 standard are investigated experimentally by using activated carbon. Measurements were taken on an experimental set up based on the TS 932 standard. Filter efficiency was measured by injecting test powder at amounts predetermined in the standards into the filters at certain intervals. The data obtained showed that the powder holding capacities of the activated carbon filter are high enough to yield efficiency of around 90% and that the H13 and H14 filters exhibit high efficiency suitable for the standard used.

Keywords: activated carbon filters, HEPA filters, powder holding capacities, air conditioning systems

Procedia PDF Downloads 248
13243 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.

Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification

Procedia PDF Downloads 387
13242 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 334
13241 Reading Knowledge Development and Its Phases with Generation Z

Authors: Onur Özdemir, M.Erhan ORHAN

Abstract:

Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.

Keywords: knowledge development, knowledge management, generation Z, intelligence cycle

Procedia PDF Downloads 521