Search results for: pneumatic artificial muscles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2426

Search results for: pneumatic artificial muscles

1916 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 422
1915 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System

Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai

Abstract:

This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.

Keywords: artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision, free trajectories

Procedia PDF Downloads 375
1914 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 45
1913 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
1912 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
1911 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
1910 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
1909 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 517
1908 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: smart material, on-line differential artificial neural network, active control, finite element method

Procedia PDF Downloads 210
1907 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 89
1906 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis

Authors: Olga Leontjeva

Abstract:

In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.

Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management

Procedia PDF Downloads 169
1905 Evaluation of Re-mineralization Ability of Nanohydroxyapatite and Coral Calcium with Different Concentrations on Initial Enamel Carious Lesions

Authors: Ali Abdelnabi, Nermeen Hamza

Abstract:

Coral calcium is a boasting natural product and dietary supplement which is considered a source of alkaline calcium carbonate, this study is a comparative study, comparing the remineralization effect of the new product of coral calcium with that of nano-hydroxyapatite. Methodology: a total of 35 extracted molars were collected, examined and sectioned to obtain 70 sound enamel discs, all discs were numbered and examined by scanning electron microscope coupled with Energy Dispersive Analysis of X-rays(EDAX) for mineral content, subjected to artificial caries, and mineral content was re-measured, discs were divided into seven groups according to the remineralizing agent used, where groups 1 to 3 used 10%, 20%, 30% nanohydroxyapatite gel respectively, groups 4 to 6 used 10%, 20%, 30% coral calcium gel and group 7 with no remineralizing agent (control group). All groups were re-examined by EDAX after remineralization; data were calculated and tabulated. Results: All groups showed a statistically significant drop in calcium level after artificial caries; all groups showed a statistically significant rise in calcium content after remineralization except for the control group; groups 1 and 5 showed the highest increase in calcium level after remineralization. Conclusion: coral calcium can be considered a comparative product to nano-hydroxyapatite regarding the remineralization of enamel initial carious lesions.

Keywords: artificial caries, coral calcium, nanohydroxyapatite, re-mineralization

Procedia PDF Downloads 123
1904 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA

Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko

Abstract:

The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.

Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA

Procedia PDF Downloads 509
1903 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
1902 The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts

Authors: Mirna Febriani

Abstract:

The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires.

Keywords: chromium ion, stainless steel, artificial saliva, breadfruit leaf

Procedia PDF Downloads 170
1901 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 286
1900 Study of Surface Water Quality in the Wadi El Harrach for Its Use in the Artificial Groundwater Recharge of the Mitidja, North Algeria

Authors: M. Meddi, A. Boufekane

Abstract:

The Mitidja coastal groundwater which extends over an area of 1450 km2 is a strategic resource in the Algiers region. The high dependence of the regional economy on the use of this groundwater forces us to have recourse to its artificial recharge from the Wadi El Harrach in its upstream part. This system of artificial recharge has shown its effectiveness in the development of water resource mentioned in the succeeding works in several regions of the world. The objective of this study is to: Increase the reserves of water inputs by infiltration, raise the water level and its good quality in wells and boreholes, reduce losses to the sea, and address seawater intrusion by maintaining balance in the freshwater-saltwater interface in the downstream part of the groundwater basin. After analyzing the situation, it was noticed that a qualitative monitoring of the Wadi water for the groundwater recharge has to be done. For this purpose, we proceeded during three successive years (2010, 2011, and 2012) to the monthly sampling of water in the upstream part of the Wadi El Harrach for chemical analysis. The variation of the sediment transport concentration will be also measured. This monitoring aims to characterize the water quality and avoid clogging in the proposed recharge area. The results of these analyses showed the good chemical quality according to the analyses we performed in the laboratory during the three years, but they are too loaded with suspended matters. We noticed that these fine particles come from the grinding of limestone of sandpit located upstream of the area of the proposed recharge system. This problem can be solved by a water supply upstream of sandpit. For the recharge, we propose the method of using two wells for dual use, which means that it can be used for water supply and extraction. This solution is inexpensive in our case and could easily be used as wells are already drilled in the upstream part. This solution increases over time the piezometric level and also reduce groundwater contamination by saltwater in the downstream part.

Keywords: water quality, artificial groundwater recharge, Mitidja, North Algeria

Procedia PDF Downloads 287
1899 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 413
1898 Artificial Intelligent-Based Approaches for Task ‎Offloading, ‎Resource ‎Allocation and Service ‎Placement of ‎Internet of Things ‎Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications, and ‎various obstacles of traditional data centers, ‎mobile edge ‎computing (MEC) has ‎emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes, or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other, making task offloading (TO), ‎resource allocation (RA), and service placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP, and RA recent multi-‎objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications‎.

Keywords: mobile edge computing, multi-objective optimization, artificial ‎intelligence ‎approaches, task offloading, resource allocation, ‎ service placement

Procedia PDF Downloads 115
1897 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 352
1896 Reference Architecture for Intelligent Enterprise Solutions

Authors: Shankar Kambhampaty, Harish Rohan Kambhampaty

Abstract:

Data in IT systems in enterprises has been growing at a phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several artificial intelligence (AI/ML) and business intelligence (BI) tools and technologies available in the marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information, and intelligence components, and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.

Keywords: architecture, model, intelligence, artificial intelligence, business intelligence, AI, BI, ML, analytics, enterprise

Procedia PDF Downloads 143
1895 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 497
1894 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
1893 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses

Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan

Abstract:

Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.

Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis

Procedia PDF Downloads 367
1892 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
1891 Properties of Sustainable Artificial Lightweight Aggregate

Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali

Abstract:

Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.

Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable

Procedia PDF Downloads 328
1890 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 226
1889 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 421
1888 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1

Procedia PDF Downloads 138
1887 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis

Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr

Abstract:

In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.

Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response

Procedia PDF Downloads 790