Search results for: noise field measurement
11029 Building an Opinion Dynamics Model from Experimental Data
Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle
Abstract:
Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule
Procedia PDF Downloads 10911028 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.Keywords: rule induction, decision table, missing data, noise
Procedia PDF Downloads 39611027 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method
Authors: Zheng Zhang, Xin Chen, Guoqing Ding
Abstract:
Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.Keywords: root canal length, apex locator, multifrequency impedance, sweep frequency
Procedia PDF Downloads 15611026 Influence of Free Field Vibrations Due to Vibratory Pile Driving
Authors: Shashank Mukkoti, Mainak Majumder, Srinivasan Venkatraman
Abstract:
Owing to the land scarcity in the modern-day, most of the construction activities are carried out closed to the existing buildings. Most of the high-rise buildings are constructed on pile foundations to transfer the design loads to a strong stratum below the ground surface. Due to the proximity of the new and existing structures, noise disturbances are prominent during the pile installation. Installation of vibratory piles is most suitable in urban areas. The ground vibrations developed due to the vibratory pile driving may cause many detrimental effects on the surrounding structures based on the proximity of the sources and nature of the structures. In the present study, an attempt has been made to study the severity of ground vibrations induced by vibratory pile driving. For this purpose, a three-dimensional finite element model has been developed in the ABAQUS/ Explicit finite element program. The couple finite/infinite element method has been employed for the capturing of propagating waves due to the pile installation. The geometry of the pile foundations, frequency of the pile driving, length of the pile has been considered for the parametric study. The results show that vibrations generated due to the vibratory pile installation are either very close or more than the thresholds tolerance limits set by different guidelines.Keywords: FE model, pile driving, free field vibrations, wave propagation
Procedia PDF Downloads 29811025 Approach of Measuring System Analyses for Automotive Part Manufacturing
Authors: S. Homrossukon, S. Sansureerungsigun
Abstract:
This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipment were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipment of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.Keywords: automotive part manufacturing measurement, measuring accuracy, measuring precision, measurement system analyses
Procedia PDF Downloads 31111024 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry
Authors: Dongxu Chen, Yipeng Li
Abstract:
This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.Keywords: image denoising, Poisson noise, information geometry, nonlocal-means
Procedia PDF Downloads 28511023 The Effect of Extremely Low Frequency Magnetic Field on Rats Brain
Authors: Omar Abdalla, Abdelfatah Ahmed, Ahmed Mustafa, Abdelazem Eldouma
Abstract:
The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases.Keywords: nonionizing radiation, biophysics, magnetic field, shrinkage
Procedia PDF Downloads 54511022 A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application
Authors: Hyunwon Moon
Abstract:
It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 µm SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB.Keywords: biomedical, LNA, mixer, receiver, RF front-end, SiGe
Procedia PDF Downloads 31711021 Steady State Rolling and Dynamic Response of a Tire at Low Frequency
Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa
Abstract:
Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis
Procedia PDF Downloads 36711020 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model
Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini
Abstract:
This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model
Procedia PDF Downloads 36311019 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method
Authors: Satyendra Pratap Singh, S. P. Singh
Abstract:
This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit
Procedia PDF Downloads 50811018 Using Inertial Measurement Unit to Evaluate the Balance Ability of Hikers
Authors: Po-Chen Chen, Tsung-Han Yang, Zhi-Wei Zheng, Shih-Tsang Tang
Abstract:
Falls are the most common accidents during mountain hiking, especially in high-altitude environments with unstable terrain or adverse weather. Balance ability is a crucial factor in hiking, effectively ensuring hiking safety and reducing the risk of injuries. If balance ability can be assessed simply and effectively, hikers can identify their weaknesses and conduct targeted training to improve their balance ability, thereby reducing injury risks. With the widespread use of smartphones and their built-in inertial sensors, this project aims to develop a simple Inertial Measurement Unit (IMU) balance measurement technique based on smartphones. This will provide hikers with an easy-to-use, low-cost tool for assessing balance ability, monitoring training effects in real-time, and continuously tracking balance ability through uploading cloud data uploads, facilitating personal athletic performance.Keywords: balance, IMU, smartphone, wearable devices
Procedia PDF Downloads 3811017 Field Environment Sensing and Modeling for Pears towards Precision Agriculture
Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani
Abstract:
The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model
Procedia PDF Downloads 31411016 Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel
Authors: Wajahat Hussain Khan, M. Zubair Akbar Qureshi
Abstract:
The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the FKeywords: hybrid ferrofluid, heat transfer, magnetic field, porous channel
Procedia PDF Downloads 17711015 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 14211014 Generation of Automated Alarms for Plantwide Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.Keywords: detection, monitoring, process data, noise
Procedia PDF Downloads 25211013 The Proposal of Modification of California Pipe Method for Inclined Pipe
Authors: Wojciech Dąbrowski, Joanna Bąk, Laurent Solliec
Abstract:
Nowadays technical and technological progress and constant development of methods and devices applied to sanitary engineering is indispensable. Issues related to sanitary engineering involve flow measurements for water and wastewater. The precise measurement is very important and pivotal for further actions, like monitoring. There are many methods and techniques of flow measurement in the area of sanitary engineering. Weirs and flumes are well–known methods and common used. But also there are alternative methods. Some of them are very simple methods, others are solutions using high technique. The old–time method combined with new technique could be more useful than earlier. Paper describes substitute method of flow gauging (California pipe method) and proposal of modification of this method used for inclined pipe. Examination of possibility of improving and developing old–time methods is direction of the investigation.Keywords: California pipe, sewerage, flow rate measurement, water, wastewater, improve, modification, hydraulic monitoring, stream
Procedia PDF Downloads 43811012 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 7211011 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 38411010 Feasibility of Using Musical Intervention to Promote Growth in Preterm Infants in the Neonatal Intensive Care Unit (NICU)
Authors: Yutong An
Abstract:
Premature babies in the Neonatal Intensive Care Unit (NICU) are usually protected in individual incubators to ensure a constant temperature and humidity. Accompanied by 24-hour monitoring by medical equipment, this provides a considerable degree of protection for the growth of preterm babies. However, preterm babies are still continuously exposed to noise at excessively high decibels (>45dB). Such noise has a highly damaging effect on the growth and development of preterm babies. For example, in the short term, it can lead to sleep deprivation, stress reactions, and difficulty calming emotions, while in the long term, it can trigger endocrine disorders, metabolic disorders, and hearing impairment. Fortunately, musical interventions in the NICU have been shown to provide calmness to newborns. This article integrates existing research on three types of music that are beneficial for preterm infants and their respective advantages and disadvantages. This paper aims to present a possibility, based on existing NICU equipment and experimental data related to musical interventions, to reduce the impact of noise on preterm babies in the NICU through a system design approach that incorporates a personalized adjustable music system in the incubator and an overall music enhancement in the open bay of the NICU.Keywords: music interventions, neonatal intensive care unit (NICU), premature babies, neonatal nursing
Procedia PDF Downloads 6411009 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar
Abstract:
The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.Keywords: supersonic nozzle, Chevron, acoustic level, shape optimization of Chevron nozzles, jet noise suppression
Procedia PDF Downloads 51611008 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 24711007 Harvesting Alternative Energy: Exploring Exergy, Human Power, Animal Body Heat, and Noise as Sustainable Sources
Authors: Fatemeh Yazdandoust, Derrick Mirrindi
Abstract:
The excessive use of non-renewable fossil fuels has led to a pressing energy crisis that demands urgent attention. While renewable sources like solar, wind, and water have gained significant attention as alternatives, we must explore additional avenues. This study takes an interdisciplinary approach, investigating the potential of waste streams from energy production and other untapped natural sources as sustainable energy solutions. Through a review of case studies, this study demonstrates how these alternative sources, including human power, animal body heat, and noise, can seamlessly integrate into architecture and urban planning. This article first discusses passive design strategies integrating alternative energy sources into vernacular architecture. Then, it reviews the waste stream (exergy) and potential energy sources, such as human power, animal body heat, and noise, in contemporary proposals and case studies. It demonstrates how an alternative energy design strategy may easily incorporate these many sources into our architecture and urban planning through passive and active design strategies to increase the energy efficiency of our built environment.Keywords: alternative energy sources, energy exchange, human and animal power, potential energy sources, waste stream
Procedia PDF Downloads 5711006 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program
Authors: Munir Majdalawieh, Adam Marks
Abstract:
In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.Keywords: academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment
Procedia PDF Downloads 23811005 Performance Evaluation of Wideband Code Division Multiplication Network
Authors: Osama Abdallah Mohammed Enan, Amin Babiker A/Nabi Mustafa
Abstract:
The aim of this study is to evaluate and analyze different parameters of WCDMA (wideband code division multiplication). Moreover, this study also incorporates brief yet throughout analysis of WCDMA’s components as well as its internal architecture. This study also examines different power controls. These power controls may include open loop power control, closed or inner group loop power control and outer loop power control. Different handover techniques or methods of WCDMA are also illustrated in this study. These handovers may include hard handover, inter system handover and soft and softer handover. Different duplexing techniques are also described in the paper. This study has also presented an idea about different parameters of WCDMA that leads the system towards QoS issues. This may help the operator in designing and developing adequate network configuration. In addition to this, the study has also investigated various parameters including Bit Energy per Noise Spectral Density (Eb/No), Noise rise, and Bit Error Rate (BER). After simulating these parameters, using MATLAB environment, it was investigated that, for a given Eb/No value the system capacity increase by increasing the reuse factor. Besides that, it was also analyzed that, noise rise is decreasing for lower data rates and for lower interference levels. Finally, it was examined that, BER increase by using one type of modulation technique than using other type of modulation technique.Keywords: duplexing, handover, loop power control, WCDMA
Procedia PDF Downloads 21511004 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound
Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim
Abstract:
People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution
Procedia PDF Downloads 26811003 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets
Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid
Abstract:
This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.
Procedia PDF Downloads 45011002 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 25211001 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness
Procedia PDF Downloads 33411000 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS
Authors: Gagandeep Singh
Abstract:
The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.Keywords: WSNs, ECRSEP, SEP, field optimization, energy
Procedia PDF Downloads 300