Search results for: lung computed tomography (CT) images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3758

Search results for: lung computed tomography (CT) images

3248 Histological Changes of Mice Lungs After Daily Exposure to Different Concentration of Incense Smoke

Authors: Samar Omar A. Rabah, Sahar Ragab El Hadad, Fatmah Albani

Abstract:

Since the discovery of Agarwood (Incense tree), many studies reported its characteristic effects and variable benefits, as either to produce Arabian Incense or as a traditional medicine against many diseases. Laboratory experiments were carried out on the effect of different concentrations of Incense smoke inhalation on the lung weight and tissue in female mice. This research derives its importance from the fact that Incense is heavily used in Saudi Arabia in the absence of thorough studies of its effects on health. Eighty animals are used in this study, and they are divided into four groups, each is 20 animals. Three groups are exposed to different concentrations (2, 4 and 6 gm) of Incense smoke daily for three months, and the fourth group is the control. At the end of each month, five animals from each group were dissected. Obtained data showed an increase but not significant in animal body and lung weight, this results return to natural increase as a result of normal growth of animals. Light microscope reveals some changes in the lung tissue, such as focal emphysema, rupture in the alveolar walls, hemorrhage, congestion, edema and few peri-bronchial lymphoid cells. After continuous exposure to Incense smoke focal necrosis and degradation are observed in some cells of epithelial bronchioles. Also, fibrosis of peri-bronchial, thickening in alveolar walls and aggregation of lymphoid cells are demonstrated in some lungs sections. according to the above manifestations it could be concluded that exposure to Incense smoke causes pulmonary harmful effects. Therefore, we can recommend that Incense smoke will be used only in open places to reduce its harms.

Keywords: incense smoke, lungs, histological changes of lungs, agarwood

Procedia PDF Downloads 494
3247 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
3246 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 75
3245 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 22
3244 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection

Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary

Abstract:

We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.

Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning

Procedia PDF Downloads 238
3243 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 88
3242 The Images of Japan and the Japanese People: A Case of Japanese as a Foreign Language Students in Portugal

Authors: Tomoko Yaginuma, Rosa Cabecinhas

Abstract:

Recently, the studies of the images about Japan and/or the Japanese people have been done in a Japanese language education context since the number of the students of Japanese as a Foreign Language (JFL) has been increasing worldwide, including in Portugal. It has been claimed that one of the reasons for this increase is the current popularity of Japanese pop-culture, namely anime (Japanese animations) and manga (Japanese visual novels), among young students. In the present study, the images about Japan and the Japanese held by JFL students in Portugal were examined by a questionnaire survey. The JFL students in higher education in Portugal (N=296) were asked to answer, among the other questions, their degree of agreement (using a Likert scale) with 24 pre-defined descriptions about the Japanese, which appear as relevant in a qualitative pilot study conducted before. The results show that the image of Japanese people by Portuguese JFL students is stressed around four dimensions: 1) diligence, 2) kindness, 3) conservativeness and 4) innovativeness. The students considered anime was the main source of information about the Japanese people and culture and anime was also strongly associated with the students’ interests in learning Japanese language.

Keywords: anime, cultural studies, images about Japan and Japanese people, Portugal

Procedia PDF Downloads 150
3241 Features for Measuring Credibility on Facebook Information

Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan

Abstract:

Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.

Keywords: facebook, social media, credibility measurement, internet

Procedia PDF Downloads 356
3240 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 90
3239 Constellating Images: Bilderatlases as a Tool to Develop Criticality towards Visual Culture

Authors: Quirijn Menken

Abstract:

Menken, Q. Author  Constellating Images Abstract—We live in a predominantly visual era. Vastly expanded quantities of imagery influence us on a daily basis, in contrast to earlier days where the textual prevailed. The increasing producing and reproducing of images continuously compete for our attention. As such, how we perceive images and in what way images are framed or mediate our beliefs, has become of even greater importance than ever before. Especially in art education a critical awareness and approach of images as part of visual culture is of utmost importance. The Bilderatlas operates as a mediation, and offers new Ways of Seeing and knowing. It is mainly known as result of the ground-breaking work of the cultural theorist Aby Warburg, who intended to present an art history without words. His Mnemosyne Bilderatlas shows how the arrangement of images - and the interstices between them, offers new perspectives and ways of seeing. The Atlas as a medium to critically address Visual Culture is also practiced by the German artist Gerhard Richter, and it is in written form used in the Passagen Werk of Walter Benjamin. In order to examine the use of the Bilderatlas as a tool in art education, several experiments with art students have been conducted. These experiments have lead to an exploration of different Pedagogies, which help to offer new perspectives and trajectories of learning. To use the Bilderatlas as a tool to develop criticality towards Visual Culture, I developed and tested a new pedagogy; a Pedagogy of Difference and Repetition, based on the philosophy of Gilles Deleuze. Furthermore, in offering a new pedagogy - based on the rhizomatic work of Gilles Deleuze – the Bilderatlas as a tool to develop criticality has found a firm basis. Keywords—Art Education, Walter Benjamin, Bilderatlas, Gilles Deleuze, Difference and Repetition, Pedagogy, Rhizomes, Visual Culture,

Keywords: Art Education, Bilderatlas, Pedagogy, Aby Warburg

Procedia PDF Downloads 156
3238 Image Processing and Calculation of NGRDI Embedded System in Raspberry

Authors: Efren Lopez Jimenez, Maria Isabel Cajero, J. Irving-Vasqueza

Abstract:

The use and processing of digital images have opened up new opportunities for the resolution of problems of various kinds, such as the calculation of different vegetation indexes, among other things, differentiating healthy vegetation from humid vegetation. However, obtaining images from which these indexes are calculated is still the exclusive subject of active research. In the present work, we propose to obtain these images using a low cost embedded system (Raspberry Pi) and its processing, using a set of libraries of open code called OpenCV, in order to obtain the Normalized Red-Green Difference Index (NGRDI).

Keywords: Raspberry Pi, vegetation index, Normalized Red-Green Difference Index (NGRDI), OpenCV

Procedia PDF Downloads 292
3237 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
3236 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 34
3235 An Analysis of Iranian Social Media Users’ Perceptions of Published Images of Coronavirus Deaths

Authors: Ali Gheshmi

Abstract:

The highest rate of death, after World War II, is due to the Coronavirus epidemic and more than 2 million people have died since the epidemic outbreak in December 2019, so the word “death” is one of the highest frequency words in social media; moreover, the use of social media has grown due to quarantine and successive restrictions and lockdowns. The most important aspects of the approach used by this study include the analysis of Iranian social media users’ reactions to the images of those who died due to Coronavirus, investigating if seeing such images via social media is effective on the users’ perception of the closeness of death, and evaluating the extent to which the fear of Coronavirus death is instrumental in persuading users to observe health protocols or causing mental problems in social media users. Since the goal of this study is to discover how social media users perceive and react to the images of people who died of Coronavirus, the cultural studies approach is used Receipt analysis method and in-depth interviews will be used for collecting data from Iranian users; also, snowball sampling is used in this study. The probable results would show that cyberspace users experience the closeness of “death” more than any time else and to cope with these annoying images, avoid viewing them or if they view, it will lead them to suffer from mental problems.

Keywords: death, receipt analysis method, mental health, social media, Covid-19

Procedia PDF Downloads 156
3234 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 348
3233 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 450
3232 Coupling Concept of Two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis

Authors: Luciano Garelli, Marco Schauer, Jorge D’Elia, Mario A. Storti, Sabine C. Langer

Abstract:

This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM, a software developed at Centro de Investigación de Métodos Computacionales (CIMEC). The structural part of the coupled process is computed by the research code elementary Parallel Solver (elPaSo) of the Technische Universität Braunschweig, Institut für Konstruktionstechnik (IK).

Keywords: computational fluid dynamics (CFD), fluid structure interaction (FSI), finite element method (FEM), software

Procedia PDF Downloads 553
3231 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
3230 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 211
3229 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 273
3228 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 111
3227 Accumulation of PM10 and Associated Metals Due to Opencast Coal Mining Activities and Their Impact on Human Health

Authors: Arundhuti Devi, Gitumani Devi, Krishna G. Bhattacharyya

Abstract:

The goal of this study was to assess the characteristics of the airborne dust created by opencast coal mining and its relation to population hospitalization risk for skin and lung diseases in Margherita Coalfield, Assam, India. Air samples were collected for 24 h in three 8-h periods. For the collection of particulate matter (PM10) and total suspended particulate matter (SPM) samples, respiratory dust samplers with glass microfiber filter papers were used. PM10 was analyzed for Cu, Cd, Cr, Mn, Zn, Ni, Fe and Pb with Flame Atomic Absorption Spectrophotometer (FAAS). SPM and PM10 concentrations were respectively found to be as high as 1,035 and 265.85 μg/m³ in work zone air. The concentration of metals associated with PM10 showed values higher than the permissible limits. It was observed that the average concentrations of the metals Fe, Pb, Ni, Zn, and Cu were very high during the winter month of December, those of Cd and Cr were high during the month of May and Mn was high during February. The morphology of the particles studied with scanning electron microscopy (SEM) gave significant results. Due to opencast coal mining, the air in the work zone, as well as the general ambient air, was found to be highly polluted with respect to dust. More than 8000 patient records maintained by the hospital authority were collected from three hospitals in the area. The highest percentage of people suffering from lung diseases are found in Margherita Civil Hospital (~26.77%) whereas most people suffering from skin diseases reported for treatment in the ESIC hospital (47.47%). Both PM10 and SPM were alarmingly high, and the results were in conformity with the high incidence of lung and other respiratory diseases in the study area.

Keywords: heavy metals, open cast coal mining, PM10, respiratory diseases

Procedia PDF Downloads 317
3226 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 448
3225 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 455
3224 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
3223 A Lung Cancer Patients with Septic Shock Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective: This article explores the nursing experience of an 84-year-old male lung cancer patient who underwent a thoracoscopic right lower lobectomy and treatment. The patient has multiple medical histories, including hypertension and diabetes. The nursing process involved cancer treatment, postoperative pain management, as well as wound care and healing. Methods: The nursing period is from February 10 to February 17, 2024. During the nursing process, pain management strategies are implemented, including morphine drugs and non-drug methods, and music therapy, essential oil massage, and extended reception time are used to make patients feel physically and mentally comfortable so as to reduce postoperative pain and encourage active participation in rehabilitation. Strict sterile wound dressing procedures and advanced wound care techniques are used to promote wound healing and prevent infection. Due to septic shock, dialysis is used to relieve worsening symptoms. Taking into account the patient's cancer status, the nursing team provides comprehensive cancer care based on the patient's physical and psychological needs. Given the complexity of the patient's condition, including advanced cancer, palliative care is also incorporated throughout the care process to relieve discomfort and provide psychological support. Results: Through comprehensive health assessment, the nursing team fully understood the patient's condition and developed a personalized care plan based on the patient's condition. The interprofessional critical care team provides respiratory therapy and lung expansion exercises to reduce muscle loss while addressing the patient's psychological status, pain management, and vital sign stabilization needs, resulting in a comprehensive approach to care. Lung expansion exercises and the use of a high-frequency chest wall oscillation vest successfully improved sputum drainage and facilitated weaning from mechanical ventilation. In addition, helping patients stabilize their vital signs and the integration of cancer care, pain management, wound care and palliative care helps the patient be fully supported throughout the recovery process, ultimately improving his quality of life. Conclusion: Lung cancer and septic shock present significant challenges to patients, and the nursing team not only provides critical care but also addresses the unique needs of patients through comprehensive infection control, cancer care, pain management, wound care, and palliative care interventions. These measures effectively improve patients' quality of life, promote recovery, and provide compassionate palliative care for terminally ill patients. Nursing staff work closely with family members to develop a comprehensive care plan to ensure that patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.

Keywords: septic shock, lung cancer, palliative care, nursing experience

Procedia PDF Downloads 24
3222 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease

Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica

Abstract:

Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.

Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses

Procedia PDF Downloads 191
3221 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 173
3220 Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation

Authors: Abdelrahman Elsehsah

Abstract:

The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL.

Keywords: Aswan high dam lake, remote sensing, water balance equation, seepage loss, evaporation loss

Procedia PDF Downloads 36
3219 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 63