Search results for: high resolution satellite image
22523 A Conceptual Framework to Study Cognitive-Affective Destination Images of Thailand among French Tourists
Authors: Ketwadee Madden
Abstract:
Product or service image is among the vital factors that predict individuals’ choice of buying a product or services, goes to a place or attached to a person. Similarly, in the context of tourism, the destination image is a very important factor to which tourist considers before making their tour destination decisions. In light of this, the objective of this study is to conceptually investigate among French tourists, the determinants of Thailand’s tourism destination image. For this objective to be achieved, prior studies were reviewed, leading to the development of conceptual framework highlighting the determinants of destination image. In addition, this study develops some hypotheses that are to be empirically investigated. Aside these, based on the conceptual findings, suggestions on how to motivate European tourists to chose Thailand as their preferred tourism destination were made.Keywords: cognitive destination image, affective destination image, motivations, risk perception, word of mouth
Procedia PDF Downloads 13922522 Performance Evaluation of Content Based Image Retrieval Using Indexed Views
Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris
Abstract:
Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.Keywords: content based image retrieval (CBIR), indexed view, color, image retrieval, cross correlation
Procedia PDF Downloads 47022521 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection
Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi
Abstract:
The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure
Procedia PDF Downloads 28022520 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object
Authors: Toufic Abd El-Latif Sadek
Abstract:
The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.Keywords: best timing, concrete areas, optimal, satellite thermal images
Procedia PDF Downloads 35422519 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image
Authors: Lan Du, Yan Wang, Hui Dai
Abstract:
Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation
Procedia PDF Downloads 38622518 The Historical Perspectives of Peace Education as a Vehicle of Unity and Technological Developments in Nigeria
Authors: Oluwole Enoch Adeniran
Abstract:
Peace studies and conflict resolution; though a relatively new discipline had attracted scholars from far and near. It had enhanced a purposeful training of mind of young adult among other categories of learners. It provides a platform through which university under-graduates and post-graduates students are exposed to the rudiments of peace building, peacemaking and peace keeping towards a successful conflict resolution. The paper historicizes peace education as most desirable in any human society that desired development. It aims at educating children and young adults in the dynamics of peaceful conflicts resolution at home, in school and communities (states) throughout the world for a purposeful technological development. It also aims at exposing students to the nature of conflict and how to manage and resolve conflicts in order to promote national unity for meaningful development. The paper argues that, for a state to record any meaningful socio-economic, political and technological development; a conducive and peaceful atmosphere must be put in place. This theoretical paper emerged in the context of historical specificities of conflict resolution from a general conceptual framework. It then concludes with suggestions on the modes of conflict prevention, conflict management and conflict resolution for an ideal technologically advanced society.Keywords: history, education, peace, unity, technology and development
Procedia PDF Downloads 36322517 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.Keywords: predictive control, synchronization, satellite attitude, control engineering
Procedia PDF Downloads 55522516 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 17322515 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 13222514 Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry
Authors: Juni C. Kim, Anna R. Robuck, Douglas I. Walker
Abstract:
The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease.Keywords: exposome, metabolome, computational metabolomics, high-resolution mass spectrometry, exposure, pollutants
Procedia PDF Downloads 13822513 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique
Authors: Hiroyuki Aoki
Abstract:
The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.Keywords: polymer materials, single molecule, super-resolution techniques, conformation
Procedia PDF Downloads 30522512 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 14922511 Differentiation between Different Rangeland Sites Using Principal Component Analysis in Semi-Arid Areas of Sudan
Authors: Nancy Ibrahim Abdalla, Abdelaziz Karamalla Gaiballa
Abstract:
Rangelands in semi-arid areas provide a good source for feeding huge numbers of animals and serving environmental, economic and social importance; therefore, these areas are considered economically very important for the pastoral sector in Sudan. This paper investigates the means of differentiating between different rangelands sites according to soil types using principal component analysis to assist in monitoring and assessment purposes. Three rangeland sites were identified in the study area as flat sandy sites, sand dune site, and hard clay site. Principal component analysis (PCA) was used to reduce the number of factors needed to distinguish between rangeland sites and produce a new set of data including the most useful spectral information to run satellite image processing. It was performed using selected types of data (two vegetation indices, topographic data and vegetation surface reflectance within the three bands of MODIS data). Analysis with PCA indicated that there is a relatively high correspondence between vegetation and soil of the total variance in the data set. The results showed that the use of the principal component analysis (PCA) with the selected variables showed a high difference, reflected in the variance and eigenvalues and it can be used for differentiation between different range sites.Keywords: principal component analysis, PCA, rangeland sites, semi-arid areas, soil types
Procedia PDF Downloads 18622510 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 7722509 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques
Authors: Nartan Rajpriya
Abstract:
City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.Keywords: urban green space, ecocity, IKONOS, LISS IV
Procedia PDF Downloads 38622508 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 14522507 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 44922506 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 13022505 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera
Authors: Isa Moazen, Ali Nahvi
Abstract:
Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction
Procedia PDF Downloads 13822504 Suspended Sediment Concentration and Water Quality Monitoring Along Aswan High Dam Reservoir Using Remote Sensing
Authors: M. Aboalazayem, Essam A. Gouda, Ahmed M. Moussa, Amr E. Flifl
Abstract:
Field data collecting is considered one of the most difficult work due to the difficulty of accessing large zones such as large lakes. Also, it is well known that the cost of obtaining field data is very expensive. Remotely monitoring of lake water quality (WQ) provides an economically feasible approach comparing to field data collection. Researchers have shown that lake WQ can be properly monitored via Remote sensing (RS) analyses. Using satellite images as a method of WQ detection provides a realistic technique to measure quality parameters across huge areas. Landsat (LS) data provides full free access to often occurring and repeating satellite photos. This enables researchers to undertake large-scale temporal comparisons of parameters related to lake WQ. Satellite measurements have been extensively utilized to develop algorithms for predicting critical water quality parameters (WQPs). The goal of this paper is to use RS to derive WQ indicators in Aswan High Dam Reservoir (AHDR), which is considered Egypt's primary and strategic reservoir of freshwater. This study focuses on using Landsat8 (L-8) band surface reflectance (SR) observations to predict water-quality characteristics which are limited to Turbidity (TUR), total suspended solids (TSS), and chlorophyll-a (Chl-a). ArcGIS pro is used to retrieve L-8 SR data for the study region. Multiple linear regression analysis was used to derive new correlations between observed optical water-quality indicators in April and L-8 SR which were atmospherically corrected by values of various bands, band ratios, and or combinations. Field measurements taken in the month of May were used to validate WQP obtained from SR data of L-8 Operational Land Imager (OLI) satellite. The findings demonstrate a strong correlation between indicators of WQ and L-8 .For TUR, the best validation correlation with OLI SR bands blue, green, and red, were derived with high values of Coefficient of correlation (R2) and Root Mean Square Error (RMSE) equal 0.96 and 3.1 NTU, respectively. For TSS, Two equations were strongly correlated and verified with band ratios and combinations. A logarithm of the ratio of blue and green SR was determined to be the best performing model with values of R2 and RMSE equal to 0.9861 and 1.84 mg/l, respectively. For Chl-a, eight methods were presented for calculating its value within the study area. A mix of blue, red, shortwave infrared 1(SWR1) and panchromatic SR yielded the greatest validation results with values of R2 and RMSE equal 0.98 and 1.4 mg/l, respectively.Keywords: remote sensing, landsat 8, nasser lake, water quality
Procedia PDF Downloads 9222503 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan
Abstract:
Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.Keywords: environment, Landsat 8, SW Algorithm, TIR
Procedia PDF Downloads 35522502 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 39622501 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 12322500 Hydrodynamics of Selected Ethiopian Rift Lakes
Authors: Kassaye Bewketu Zellelew
Abstract:
The Main Ethiopian Rift Valley lakes suffer from water level fluctuations due to several natural and anthropocentric factors. Lakes located at terminal positions are highly affected by the fluctuations. These fluctuations are disturbing the stability of ecosystems, putting very serious impacts on the lives of many animals and plants around the lakes. Hence, studying the hydrodynamics of the lakes was found to be very essential. The main purpose of this study is to find the most significant factors that contribute to the water level fluctuations and also to quantify the fluctuations so as to identify lakes that need special attention. The research method included correlations, least squares regressions, multi-temporal satellite image analysis and land use change assessment. The results of the study revealed that much of the fluctuations, specially, in Central Ethiopian Rift are caused by human activities. Lakes Abiyata, Chamo, Ziway and Langano are declining while Abaya and Hawassa are rising. Among the studied lakes, Abiyata is drastically reduced in size (about 28% of its area in 1986) due to both human activities (most dominant ones) and natural factors. The other seriously affected lake is Chamo with about 11% reduction in its area between 1986 and 2010. Lake Abaya was found to be relatively stable during this period (showed only a 0.8% increase in its area). Concerned bodies should pay special attention to and take appropriate measures on lakes Abiyata, Chamo and Hawassa.Keywords: correlations, hydrodynamics, lake level fluctuation, landsat satellite images
Procedia PDF Downloads 26522499 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 23022498 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 48222497 Brainbow Image Segmentation Using Bayesian Sequential Partitioning
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning
Procedia PDF Downloads 48722496 Image Compression on Region of Interest Based on SPIHT Algorithm
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.Keywords: Compression ratio, DWT, SPIHT, DCT
Procedia PDF Downloads 34922495 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 7622494 Characterization of Optical Systems for Intraocular Projection
Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera
Abstract:
Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.Keywords: focusing, projection, blindness, cornea , achromatic, pinhole
Procedia PDF Downloads 132