Search results for: grain coarsening temperature
7123 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy
Authors: Tao Yang, Yongli Zhao
Abstract:
Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking
Procedia PDF Downloads 1907122 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures
Authors: Samir Al-Zobaidi
Abstract:
This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100°C. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation
Procedia PDF Downloads 3807121 In situ High Temperature Characterization of Diamond-Like Carbon Films
Authors: M. Rouhani, F. C. N. Hong, Y. R. Jeng
Abstract:
The tribological performance of DLC films is limited by graphitization at elevated temperatures. Despite of numerous studies on the thermal stability of DLC films, a comprehensive in-situ characterization at elevated temperature is still lacking. In this study, DLC films were deposited using filtered cathodic arc vacuum method. Thermal stability of the films was characterized in-situally using a synchronized technique integrating Raman spectroscopy and depth-sensing measurements. Tests were performed in a high temperature chamber coupled with feedback control to make it possible to study the temperature effects in the range of 21 – 450 ̊C. Co-located SPM and Raman microscopy maps at different temperature over a specific area on the surface of the film were prepared. The results show that the thermal stability of the DLC films depends on their sp3 content. Films with lower sp3 content endure graphitization during the temperature-course used in this study. The graphitization is accompanied with significant changes in surface roughness and Raman spectrum of the film. Surface roughness of the films start to change even before graphitization transformation could be detected using Raman spectroscopy. Depth-sensing tests (nanoindentation, nano-scratch and wear) endorse the surface roughness change seen before graphitization occurrence. This in-situ study showed that the surface of the films is more sensitive to temperature rise compared to the bulk. We presume the changes observed in films hardness, surface roughness and scratch resistance with temperature rise, before graphitization occurrence, is due to surface relaxation.Keywords: DLC film, nanoindentation, Raman spectroscopy, thermal stability
Procedia PDF Downloads 2007120 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling
Procedia PDF Downloads 3417119 Consumer Acceptability of Crackers Produced from Blend of Sprouted Pigeon Pea, Unripe Plantain and Brewers’ Spent Grain and Its Hypoglycemic Effect in Diabetic Rats
Authors: Nneka N. Uchegbu
Abstract:
Physical, sensory properties and hypoglycemic effect of crackers produced from sprouted pigeon pea, unripe plantain and brewers’ spent grain fed to diabetic rats were investigated. Different composite flours were used to produce crackers. Physical and sensory properties of the crackers, the blood serum of the rats and changes in the rat body weight were measured. Spread ratio and break strength of the crackers from different flour blends ranges from 7.01 g to 8.51 g and 1.87 g to 3.01 g respectively. The acceptability of the crackers revealed that Sample A (100% wheat crackers) was not significantly (p>0.05) different from Samples C and D. Feeding the rats with formulated crackers caused an increase in the body weight of the rats but a reduced body weight was observed in diabetic rats fed with normal rat feed. The result indicated that cracker produced from the formulated flour blends caused a significant hypoglycemic effect in diabetic rats and led to a reduction of measured biochemical indices. Therefore, this work showed that consumption of crackers from the above formulated flour blend was able to decrease hyperglycemia in diabetic rats.Keywords: hypoglyceamia, hyperlipidimia, total lipid, triglyceride, total cholesterol
Procedia PDF Downloads 3017118 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle
Authors: Rasikh Tariq, Fatima Z. Benarab
Abstract:
Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported. Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.Keywords: HMX, maisotsenko cycle, mathematical modeling, numerical simulation, parametric study
Procedia PDF Downloads 1487117 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor
Authors: Amira Zrelli, Tahar Ezzeddine
Abstract:
Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.Keywords: Fiber Bragg Grating Sensors (FBGS), strain, temperature, humidity, structural health monitoring (SHM)
Procedia PDF Downloads 3167116 Diagnosis of the Hydrological and Hydrogeological Potential in the Mancomojan Basin for Estimations of Offer and Demand
Authors: J. M. Alzate, J. Baena
Abstract:
This work presents the final results of the ‘Diagnosis of the hydrological and hydrogeological potential in the Mancomojan basin for estimations of offer and demand’ with the purpose of obtaining solutions of domestic supply for the communities of the zone of study. There was realized the projection of population of the paths by three different scenes. The highest water total demand appears with the considerations of the scene 3, with a total demand for the year 2050 of 59.275 m3/year (1,88 l/s), being the path San Francisco the one that exercises a major pressure on the resource with a demand for the same year of the order of 31.189 m3/year (0,99 l/s). As for the hydrogeological potential of the zone and as alternative of supply of the studied communities, the stratigraphic columns obtained of the geophysical polls do not show strata saturated with water that could be considered to be a potential source of supply for the communities. The water registered in the geophysics tests presents very low resistances what indicates that he presents ions, this water meets in the rock interstices very thin granulometries which indicates that it is a water of constitution, and the flow of this one towards more permeable granulometries is void or limited. The underground resource that is registered so much in electrical vertical polls (SEV) as in tomography and that is saturating rocks of thin granulometry (clays and slimes), was demonstrated by content of ions, which is consistent with the abundant presence of plaster and the genesis marinades with transition to continental of the geological units in the zone. Predominant rocks are sedimentary, sandy rocks of grain I die principally, in minor proportion were observed also sandstones of thick grain to conglomerate with clastic rock of quartz, chert and siltstone of the Formation Mess and sandstones (of thin, average and thick grain) alternating with caps conglomerate whose thickness is, in general, between 5 and 15 cm, the nodules of sandstones are frequent with the same composition of the sandstones that contain them, in some cases with calcareous and crossed stratification of the formation Sincelejo Miembro Morroa.Keywords: hydrological, hydrogeological potential, geotomography, vertical electrical sounding (VES)
Procedia PDF Downloads 2607115 High Temperature in Caustic Pretreatment of Gold Locked in the Residue after Filtration from Gold Cyanidation Leaching
Authors: K. L. Kabemba, R. F. Sandenberg
Abstract:
The usual way to desorb gold is by elution with a hot concentrated alkaline solution of sodium cyanide. The high temperature is necessary because the dielectric constant of water decreases with increasing temperature hence the electrostatic forces between charcoal and the gold cyanide complex decreases. High alkalinity and a high concentration of cyanide are necessary for gold desorption because both OH- and CN- ions are preferentially adsorbed. The rate of elution increases with increasing anion concentration but decreases with increasing cation concentration that means the rate of elution passes through a maximum as the concentration of the eluting salt (NaCN, for example) is increased. The anion that gives the best results, the cyanide ion, decomposes fairly rapidly at elevated temperatures (40% in 6 hours, 90% in 24 hours at 95°C).Keywords: caustic, cyanide, gold, temperature
Procedia PDF Downloads 3887114 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate
Authors: C. Lanzerstorfer, M. Hinterberger
Abstract:
The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.Keywords: iron ore concentrate, flowability, moisture content, wall friction angle
Procedia PDF Downloads 3187113 Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices
Authors: Ravinder Dachepalli, Naveena Gadwala, K. Vani
Abstract:
Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices.Keywords: Bi-Nd and Bi-Er Multifunctional Materia, Citrate Gel Auto combustion Technique, FC-ZFC magnetization, Dielectric constant
Procedia PDF Downloads 4027112 Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating
Authors: Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan
Abstract:
This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors.Keywords: ambient temperature, de-rating factor, electric generator, power factor
Procedia PDF Downloads 3587111 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing
Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno
Abstract:
The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined.Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition
Procedia PDF Downloads 4177110 Oat Grain Functional Ingredient Characterization
Authors: Vita Sterna, Sanita Zute, Inga Jansone, Linda Brunava, Inara Kantane
Abstract:
Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases.Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β - glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70 –17.30% total dietary fibre 13.66-30.17 g100g-1, content of β-glucans 2.7-3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 to 9.9 mg kg-1. The sum of essential amino acids in oat grain samples were determined from 31.63 to 54.90 gkg-1. Concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal.Keywords: dietetic fibre, amino acids, scores, nutrition value
Procedia PDF Downloads 4977109 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films
Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui
Abstract:
In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.Keywords: physical properties, sol, gel, TiO2/SiO2 composite films
Procedia PDF Downloads 4947108 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection
Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa
Abstract:
Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW
Procedia PDF Downloads 5357107 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch
Authors: Eliska Smidova, Petr Kabele
Abstract:
This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model
Procedia PDF Downloads 2907106 Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod
Authors: Ehan Sabah Shukri, Wirachman Wisnoe
Abstract:
Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser.Keywords: diffuser, temperature distribution, CFD, pitch ratio
Procedia PDF Downloads 4107105 Pet Care Monitoring with Arduino
Authors: Sathapath Kilaso
Abstract:
Nowadays people who live in the city tend to have a pet in order to relief the loneliness more than usual. It can be observed by the growth of the local pet industry. But the essentials of lifestyle of the urban people which is restricted by time and work might not allow the owner to take care of the pet properly. So this article will be about how to develop the prototype of pet care monitoring with Arduino Microcontroller. This prototype can be used to monitor the pet and its environment around the pet such as temperature (both pet’s temperature and outside temperature), humidity, food’s quantity, air’s quality and also be able to reduce the stress of the pet. This prototype can report the result back to the owner via online-channel such as website etc.Keywords: pet care, Arduino Microcontroller, monitoring, prototype
Procedia PDF Downloads 3607104 Temperature Effect on Corrosion and Erosion in Transfer Line Exchange by CFD
Authors: S. Hehni Meidani Behzad, Mokhtari Karchegani Amir, Mabodi Samad
Abstract:
There are some TLE (Transfer Line Exchanger) that their lifetime reduced to 4 years instead of 30 years and after 4 years, we saw corroded area on one part of those T.L.E. that named Oval header and this happened in condition that other parts of those TLE were safe and perfect. By using of thickness measurement devices, we find that thickness reduces unusually on that part and after research and doing computer analysis with fluent software, it was recognized that on that part, we have high temperature and when this out of range temperature adds to bad quality of water, corrosion increased with high rate on that part and after more research it became obviously that it case by more excess air in furnace that located before this T.L.E. that this more air case to consuming more fuel to reach same furnace temperature so it concluded that inner coil fluid temperature increased and after received to T.L.E, this case happened and deflector condition, creep in coil and material analysis confirmed that condition.Keywords: Transfer Line Exchanger (TLE), CFD, corrosion, erosion, tube, oval header
Procedia PDF Downloads 4277103 Raman and FTIR Studies of Azobenzene: Experimental and Theoretical Approach
Authors: Gomti Devi
Abstract:
Photoisomerization has been attracting to researchers due to its wide range of applications in optical switches, polymeric chains, liquid-crystalline systems and bilayer membranes etc. Azobenzene is a photochromic molecule which exhibits a reversible isomerisation process between its trans and cis isomers of different stability. An investigation has been conducted of the effects of temperature on intensity and position of Raman band of N=N, C-N stretching modes of Azobenzene (AZBN). It was found that the N=N stretching mode of Raman band shape shifts to lower frequency region with the increase in temperature. The Raman intensity was also decreased with the increase of temperature. The change in bandwidth with the increase in temperature has been studied. The FTIR spectrum of the molecule is recorded so as to complement the Raman spectra. In order to investigate the possibility of undergoing dimerization and trimerization as well as the stability of this molecule, ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed. Theoretically calculated values are found in good agreement with the experimental results.Keywords: azobenzene, temperature, ab-initio, frequency
Procedia PDF Downloads 3367102 Multilevel Two-Phase Structuring in the Nitrogen Supersaturated AISI316 Stainless Steel
Authors: Tatsuhiko Aizawa, Yohei Suzuki, Tomomi Shiratori
Abstract:
The austenitic stainless steel type AISI316 has been widely utilized as structural members and mold die substrates. The low temperature plasma nitriding has been utilized to harden these AISI316 members, parts, and dies without loss of intrinsic corrosion resistance to AISI316 stainless steels. Formation of CrN precipitates by normal plasma nitriding processes resulted in severe deterioration of corrosion toughness. Most previous studies on this low temperature nitriding of AISI316 only described the lattice expansion of original AISI316 lattices by the occupation of nitrogen interstitial solutes into octahedral vacancy sites, the significant hardening by nitrogen solid solution, and the enhancement of corrosion toughness. In addition to those engineering items, this low temperature nitriding process was characterized by the nitrogen supersaturation and nitrogen diffusion processes. The nitrogen supersaturated zones expanded by the nitrogen solute occupation to octahedral vacancy sites, and the un-nitrided surroundings to these zones were plastically strained to compensate for the mismatch strains across these nitrided and nitrided zones. The microstructure of nitrided AISI316 was refined by this plastic straining. The nitrogen diffusion process was enhanced to transport nitrogen solute atoms through the refined zone boundaries. This synergetic collaboration among the nitrogen supersaturation, the lattice expansion, the plastic straining, and the grain refinement yielded a thick nitrogen supersaturated layer. This synergetic relation was also characterized by the multilevel two-phase structuring. In XRD (X-Ray Diffraction) analysis, the nitrided AISI316 layer had - and -phases with the peak shifts from original lattices. After EBSD (Electron Back Scattering Diffraction) analysis, -grains and -grains homogeneously distributed in the nitrided layer. The scanning transmission electron microscopy (STEM) revealed that g-phase zone is N-poor cluster and a-phase zone is N-rich cluster. This proves that nitrogen supersaturated AISI316 stainless steels have multi-level two-phase structure in a very fine granular system.Keywords: AISI316 stainless steels, chemical affinity to nitrogen solutes, multi-level two-phase structuring, nitrogen supersaturation
Procedia PDF Downloads 1007101 Influence of Temperature on the Development and Feeding Activity of Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae)
Authors: Pavitra Sharma, A. K. Singh
Abstract:
The establishment of pest population in a habitat is greatly influenced by abiotic factors, such as temperature, photoperiod, and humidity. These factors influence the biology and behavior of insects and their pest status. Nezara viridula (Heteroptera: Pentatomidae), commonly known as southern green stink bug, is economically important pest of legumes. Both nymphs and adult suck the sap from different part of the plant and deteriorate the standing crop. Present study involves effects of temperature on incubation, hatching success and nymphal duration of N. viridula. The results indicated that the development of eggs requires optimal temperature range. Temperature conditions above and below the optimum range affect the incubation period as well as the percent hatchability of eggs. At 19°C, the egg incubation period was longest whereas it was shortest at 27°C. The change in temperature from the optimum condition also affected the hatchability of eggs in N. viridula. Decrease in the hatchability was observed with the decrease in temperature. However, the results were not statistically significant. Decrease in temperature from the optimum temperature to 19°C, also resulted in an increase in nymphal duration of N. viridula. However, no such effect of temperature within the studied range was observed on the morphology of nymphs or adults. Variation in temperature also had no adverse effects on the survival of laboratory bred population of Nezara nymphs. The feeding activity of the bug in relation to photoperiod was assessed by counting the number of punctures on the food surface. The results indicated that day-night regime did not affect the feeding activity of the bug significantly. The present study enhances our knowledge about the effect of environmental factors on the biology of insects and developing the strategy for ‘Integrated Pest Management’ of hemipteran insects by management of the physical factors.Keywords: development, feeding, hatchability, Nezara viridula
Procedia PDF Downloads 1787100 Quantitative Analysis of the High-Value Bioactive Components of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)
Authors: Lara Marie Pangan Lo, Soo Im Chung, Yao Cheng Zhang, Xingyue Jin, Mi Young Kang
Abstract:
Being the world’s most consumed grain crop, rice (Oryza sativa L.) demands’ have increase and this prompted the development of new rice cultivars with high bio-functional properties than the commonly used white rice. Ordinary rice variety is already known to be a potential source for a number of nutritional as well as bioactive compounds. To further enhance the rice’s nutritive values, germination is done in addition to making it more tasty and palatable when cooked. Pigmented rice, on the other hand, has become increasingly popular in the recent years for their greater antioxidant potential and other nutraceutical properties which can help alleviate the occurrence of the increasing incidence of metabolic diseases. Combining these two (2) parameters, this research study is sought to quantitatively determine the pre-germinated and germinated quantities of the major bioactive compounds of South Korea’s newly developed purplish pigmented rice grain cultivar Superjami (SJ) and red pigmented rice grain Superhongmi (SH) and compare them against the non-pigmented Normal Brown (NB) rice variety. Powdered rice grain cultivars were subjected to 72-hour germination period and the quantities of GABA, γ-oryzanol, ferulic acid, tocopherol and tocotrienol homologues were compared against their pre-germinated condition using γ- amino butyric acid (GABA) analysis and High Performance Liquid Chromatography (HPLC). Results revealed the effectiveness of germination in enhancing the bioactive components in all rice samples. GABA contents in germinated rice cultivars increased by more than 10-fold following the order: SJ >SH >NB. In addition, purple rice variety (SJ) has higher total γ-oryzanol and ferulic acid contents which increased by > 2-fold after germination followed by the red cultivar SH then the control, NB. Germinated varieties also possess higher total tocotrienol content than their pre-germinated state. As for the total tocopherol content, SJ has higher quantity, but the red-pigmented SH (0.16 mg/kg) is shown to have lower total tocopherol content than the control rice NB (0.86 mg/kg). However, all tocopherol and tocotrienol homologues were present only in small amounts ( < 3.0 mg/kg) in all pre-germinated and germinated samples. In general, all of the analyzed pigmented rice cultivars were found to possess higher bioactive compounds than the control NB rice variety. Also, regardless of their strain, germinated rice samples have higher bioactive compounds than their pre-germinated counterparts. This only shows the effectiveness of germinating rice in enhancing bioactive constituents. Overall, these results suggest the potential of the pigmented rice varieties as natural source of nutraceuticals in bio-functional food development.Keywords: bioactive compounds, germinated rice, superhongmi, superjami
Procedia PDF Downloads 4017099 Development of High Temperature Mo-Si-B Based In-situ Composites
Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz
Abstract:
The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.Keywords: molybdenum, composites, in-situ, mmc
Procedia PDF Downloads 677098 Temperature Effects on CO₂ Intake of MIL-101 and ZIF-301
Authors: M. Ba-Shammakh
Abstract:
Metal-organic frameworks (MOFs) are promising materials for CO₂ capture and they have high adsorption capacity towards CO₂. In this study, two different metal organic frameworks (i.e. MIL-101 and ZIF-301) were tested for different flue gases that have different CO₂ fractions. In addition, the effect of temperature was investigated for MIL-101 and ZIF-301. The results show that MIL-101 performs well for pure CO₂ stream while its intake decreases dramatically for other flue gases that have variable CO₂ fraction ranging from 5 to 15 %. The second material (ZIF-301) showed a better result in all flue gases and higher CO₂ intake compared to MIL-101 even at high temperature.Keywords: CO₂ capture, Metal Organic Frameworks (MOFs), MIL-101, ZIF-301
Procedia PDF Downloads 1987097 Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017
Authors: Khatia Tavidashvili, Nino Jamrishvili, Valerian Omsarashvili
Abstract:
Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in 2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century.Keywords: hail, Kakheti, meteorology, vertical distribution of the air temperature
Procedia PDF Downloads 1727096 Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance
Authors: Ken Ninez Nurpramesti Prinindya, Yuli Setiyorini
Abstract:
Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650°C, 750°C, and 850°C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850°C. It has good thermal stability until 1000°C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value.Keywords: Arc spray process, NiCr wire, post-treatment coating, high temperature-corrosion resistance
Procedia PDF Downloads 4797095 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 3697094 In-situ Fabrication of a Metal-Intermetallic Composite: Microstructure Evolution and Mechanical Response
Authors: Monireh Azimi, Mohammad Reza Toroghinejad, Leo A. I. Kestens
Abstract:
The role of different metallic and intermetallic reinforcements on the microstructure and the associated mechanical response of a composite is of crucial importance. To investigate this issue, a multiphase metal-intermetallic composite was in-situ fabricated through reactive annealing and accumulative roll bonding (ARB) processes. EBSD results indicated that the lamellar grain structure of the Al matrix after the first cycle has evolved with increasing strain to a mixed structure consisting of equiaxed and lamellar grains, whereby the steady-state did not occur after the 3rd (last) cycle—applying a strain of 6.1 in the Al phase, the length and thickness of the grains reduced by 92.2% and 97.3%, respectively, compared to the annealed state. Intermetallic phases together with the metallic reinforcement of Ni influence grain fragmentation of the Al matrix and give rise to a specific texture evolution by creating heterogeneity in the strain and flow patterns. Mechanical properties of the multiphase composite demonstrated the yield and ultimate tensile strengths of 217.9 MPa and 340.1 MPa, respectively, compared to 48.7 MPa and 55.4 MPa in the metal-intermetallic laminated (MIL) sandwich before applying the ARB process, which corresponds to an increase of 347% and 514% of yield and tensile strength, respectively.Keywords: accumulative roll bonding, mechanical properties, metal-intermetallic composite, severe plastic deformation, texture
Procedia PDF Downloads 195