Search results for: grain analysis
28037 Solid-State Sodium Conductor for Solid-State Battery
Authors: Yumei Wang, Xiaoyu Xu, Li Lu
Abstract:
Solid-state battery adopts solid-state electrolyte such as oxide- and composite-based solid electrolytes. With the adaption of nonflammable or less flammable solid electrolytes, the safety of solid-state batteries can be largely increased. NASICON (Na₃Zr₂Si₂PO₁₂, NZSP) is one of the sodium ion conductors that possess relatively high ionic conductivity, wide electrochemical stable range and good chemical stability. Therefore, it has received increased attention. We report the development of high-density NZSP through liquid phase sintering and its organic-inorganic composite electrolyte. Through reactive liquid phase sintering, the grain boundary conductivity can be largely enhanced while using an organic-inorganic composite electrolyte, interfacial wetting and impedance can be largely reduced hence being possible to fabricate scalable solid-state batteries.Keywords: solid-state electrolyte, composite electrolyte, electrochemical performance, conductivity
Procedia PDF Downloads 12928036 Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels
Authors: Emre Alan, Zafer Cetin
Abstract:
Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required.Keywords: electrical steels, FeSi alloy, impurities, steel cleanliness
Procedia PDF Downloads 33428035 Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy
Authors: Veeresham Mokali
Abstract:
Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures.Keywords: refractory high entropy alloys, cold-rolling, recrystallization, microstructure
Procedia PDF Downloads 20228034 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties
Procedia PDF Downloads 40128033 The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat
Authors: Abolfazl Hedayatipoor, Mohammad Younesi Alamooti
Abstract:
In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.Keywords: rainfed agriculture, conservative tillage, energy consumption, wheat
Procedia PDF Downloads 20728032 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops
Authors: Mahima Dubey, Girish Chandel
Abstract:
Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.Keywords: gene expression, micronutrient, millet, ortholog
Procedia PDF Downloads 23228031 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments
Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob
Abstract:
Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology
Procedia PDF Downloads 15728030 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process
Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois
Abstract:
Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor
Procedia PDF Downloads 13928029 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 63928028 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films
Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün
Abstract:
Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.Keywords: thin films, spray pyrolysis, SnO2, doubly doped
Procedia PDF Downloads 47628027 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent
Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer
Abstract:
Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality
Procedia PDF Downloads 25628026 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo
Authors: F. Brunke, L. Waalkes, C. Siemers
Abstract:
Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.Keywords: Ti 15Mo, titanium alloys, rare earth metals, free machining alloy
Procedia PDF Downloads 34228025 Physicochemical Characterization of Peptides Isolated from Vigna unguiculata
Authors: Sonaal Ramsookmohan
Abstract:
Legume seeds are common foods in human diet and have been identied as a valuable source of human nutritonn Since they are useful sources of protein; legume proteins are used in many food applicatonsn Critcal functonal propertes are recognized to impact the quality of foodn Cowpea (Vigna unguiculata), has been well documented for its immense potental in contributng to food security forming part of daily staple diets in most developing countriesn. In this study, cowpea seeds were used to prepare cowpea four, protein isolates by the salt extractonndialysis method and peptdes by enzymatc hydrolysis using Alcalase and Flavourzymen Functonal analyses such as water absorpton capacity, oil absorpton capacity, emulsifying and foaming propertes were conducted on the cowpea peptdesn The physicochemical propertes determine their potental applicaton in food industries as functonal ingredientsn Cowpea peptdes could increase the value of cowpea by expanding its use, as well as contribute to the legume grain sector.Keywords: physicochemical, peptides, Cowpea, alcalase, flavourzyme
Procedia PDF Downloads 7828024 Effect of Incremental Forming Parameters on Titanium Alloys Properties
Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz
Abstract:
Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.Keywords: incremental forming, metallography, shear spinning, titanium alloys
Procedia PDF Downloads 23828023 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 29128022 Functioning of Public Distribution System and Calories Intake in the State of Maharashtra
Authors: Balasaheb Bansode, L. Ladusingh
Abstract:
The public distribution system is an important component of food security. It is a massive welfare program undertaken by Government of India and implemented by state government since India being a federal state; for achieving multiple objectives like eliminating hunger, reduction in malnutrition and making food consumption affordable. This program reaches at the community level through the various agencies of the government. The paper focuses on the accessibility of PDS at household level and how the present policy framework results in exclusion and inclusion errors. It tries to explore the sanctioned food grain quantity received by differentiated ration cards according to income criterion at household level, and also it has highlighted on the type of corruption in food distribution that is generated by the PDS system. The data used is of secondary nature from NSSO 68 round conducted in 2012. Bivariate and multivariate techniques have been used to understand the working and consumption of food for this paper.Keywords: calories intake, entitle food quantity, poverty aliviation through PDS, target error
Procedia PDF Downloads 33628021 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey
Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi
Abstract:
Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.Keywords: AL1050, experiments, finite element method, severe plastic deformation
Procedia PDF Downloads 42428020 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises
Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei
Abstract:
Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises
Procedia PDF Downloads 61628019 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport
Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto
Abstract:
The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell
Procedia PDF Downloads 9228018 Approach to Study the Workability of Concrete with the Fractal Model
Authors: Achouri Fatima, Chouicha Kaddour
Abstract:
The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.Keywords: concrete, fractal method, paste thickness, water thickness, workability
Procedia PDF Downloads 38028017 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane
Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour
Abstract:
Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.Keywords: hydrogen separation, perovskite, proton conducting membrane.
Procedia PDF Downloads 34228016 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics
Authors: Mohammad Shariq, Davinder Kaur
Abstract:
A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties
Procedia PDF Downloads 34628015 Ideology and the Writer's Commitment to National Development: Profiling the Nigerian Soldier in Isidore Okpewho's ‘The Last Duty and Festus Iyayi's Heroes’
Authors: Edwin Onwuka, Segun Omidiora, Eugenia Abiodun-Eniaiyekan
Abstract:
The Nigerian military is often the subject of active critical inquiries having played significant roles in Nigeria’s national development. However, the soldier is one of the most vilified characters in Nigeria’s imaginative literature, be it in poetry, drama or prose fiction. In the main, the characterization of soldiers is predictable because of their entrenched stereotype as oppressors, tyrants, bullies, rapists, despots, killers or at best law-breakers subject to no authority outside the military institution. In most novels, the soldier’s personality is associated with force and violence; still, few have defied the norm to portray soldiers that go against the grain of notoriety. Such novels have characterized the Nigerian soldier positively as a civil, thinking and human personality in relating to civil society. To a great extent, two major impetuses that influence literary representation of characters and institutions in African literature are ideology and commitment, and one necessarily impacts on the other in shaping the artistic vision of the writer. Using two war novels therefore as templates, this paper argues that the ideology that drives the Nigerian writer’s socio-cultural commitment to national development shapes their portrayal of the Nigerian soldier in imaginative literature. A major objective of this study, therefore, is to show through close textual analysis that the writers’ ideologies influence their perception and characterization of the Nigerian soldier in Isidore Okpewho’s The Last Duty and Festus Iyayi’s Heroes, two representative novels of both persuasions described above. New Historicism is the critical framework applied in this study and its conclusion is that the Nigerian writer’s characterization of the soldier is influenced by his ideological perception of the military in the policy against the backdrop of their past socio-political activities.Keywords: commitment, ideology, national development, new historicism, Nigerian soldier
Procedia PDF Downloads 25528014 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb
Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim
Abstract:
Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.Keywords: Mg, texture, Pb, DRX
Procedia PDF Downloads 5028013 Cold Formed Steel Sections: Analysis, Design and Applications
Authors: A. Saha Chaudhuri, D. Sarkar
Abstract:
In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.Keywords: cold form steel sections, applications, present research review, blast resistant design
Procedia PDF Downloads 15028012 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines
Authors: Chandra Shekhar Verma, Umesh Chandra Mishra
Abstract:
Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter
Procedia PDF Downloads 17228011 Residual Stresses and Crystallographic Texture of Magnesium AZ31-C Alloy Welded by Friction Stir Welding (FSW)
Authors: A. Kouadri-Henni, L. Barrallier
Abstract:
The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process, the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures changed from a base metal with one texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ. In the same time, we compared this evolution with the nature and the level of the residual stresses obtained by X-ray diffraction.Keywords: texture christallography, residual stresses, FSW process
Procedia PDF Downloads 36728010 Micro-Study of Dissimilar Welded Materials
Authors: Ezzeddin Anawa, Abdol-Ghane Olabi
Abstract:
The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.
Procedia PDF Downloads 37528009 Improving Taint Analysis of Android Applications Using Finite State Machines
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.Keywords: android, static analysis, string analysis, taint analysis
Procedia PDF Downloads 18228008 Bread Quality Improvement with Special Novel Additives
Authors: Mónika Bartalné-Berceli, Eszter Izsó, Szilveszter Gergely, András Salgó
Abstract:
Nowadays a significant portion of the Earth's population does not have access to healthy food. Either because they can not afford them or because they do not know which they are. The aim of the VIIth Framework CHANCE project (Nr. 266331) supported by the European Union has been to develop relatively cheap food favorable from nutritional point of view and has acceptable quality for consumers. Within the project we dealt with manufacturing of bread belonging to basic foods. We had examined the enrichment of bread products with four kinds of bran, with a special milling product of grain industry (aleurone flour) and with a soy-based sprouted additive. The applied concentration of the six mentioned additives has been optimized and the physical and sensory properties of the bread products were monitored. The weight of the enriched breads increased slightly, however the volume and height decreased slightly compared to the corresponding data of the control bread. The composition of the final product is favorable affected by these additives having highly preferred composition from nutritional point of view.Keywords: bread products, brans, YASO, aleurone flour
Procedia PDF Downloads 388