Search results for: disaster relief networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3644

Search results for: disaster relief networks

3134 Pre-Primary Schools’ Earthquake Safety Initiative in Greece

Authors: A. Kourou, A. Ioakeimidou, A. Gakou

Abstract:

Greece due to its location in the Eastern Mediterranean region is characterized by a high degree of seismicity and occurrence of severe earthquakes. It is generally accepted that preventive planning is vital in mitigating impacts, protecting those who are the most vulnerable namely children and increasing the degree of resilience of local communities. Worldwide, States have highlighted the need to ensure the safety of early childhood environments in case of disaster. A great number of children are enrolled in daycare facilities, so building and improving the preparedness of pre-primary schools to prevent injuries and fatalities in case of an earthquake becomes an important policy issue. It is more than evident that preparedness in early preschool level will be increased through awareness and education of the people who work to pre-primary classes and provide early childhood care. The aim of the present study is to assess the level of awareness and preparedness of the Greek pre-primary schools staff concerning earthquake protection issues, as well as their risk mitigation behaviors and earthquake management in case of a strong event. In this framework, specific questionnaire was developed and filled by the abovementioned target group at 30 different municipalities of Greece (2014-2016). Also in the framework of this study it is presented the Pre-Primary Schools’ Earthquake Safety Initiative that has been undertaken by Earthquake Planning and Protection Organization (EPPO) the last years. This initiative aims to develop disaster-resilient day care centers through awareness, self-help, cooperation and education. Recognizing the necessity of integration of the disaster safety concept at pre-primary environments, EPPO published practical guidelines that focused on earthquake planning of these workspaces. Furthermore, dozens of seminars are implemented in municipality or prefecture-level every year by EPPO, in order the early childhood schools’ staff to be appropriately educated and adequately trained to face the earthquake risk. Great progress has been made towards building awareness and increasing preschool preparedness in Greece but significant gaps still remain. Anyway, it is extremely important that the implementation of effective programs and practices and the broad collaboration of all involved parties have been recognized as essential in order to develop a comprehensive disaster management system at preschool environment.

Keywords: awareness, earthquake, education, emergency plans, preparedness, pre-primary schools

Procedia PDF Downloads 196
3133 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 580
3132 Rectus Sheath Block to Extend the Effectiveness of Post Operative Epidural Analgesia

Authors: Sugam Kale, Arif Uzair Bin Mohammed Roslan, Cindy Lee, Syed Beevee Mohammed Ismail

Abstract:

Preemptive analgesia is an established concept in the modern practice of anaesthesia. To be most effective, it is best instituted earlier than the surgical stimulus and should last beyond the offset of surgically induced pain till healing is complete. Whereas the start of afferent pain blockade with regional anaesthesia is common, its effect often falls short to cover the entire period of pain impulses making their way to CNS in the post-operative period. We tried to use a combination of two regional anaesthetic techniques used sequentially to overcome this handicap. Madam S., a 56 year old lady, was scheduled for elective surgery for pancreatic cancer. She underwent laparotomy and distal pancreatectomy, splenectomy, bilateral salpingo oophorectomy, and sigmoid colectomy. Surgery was expected to be extensive, and it was presumed that the standard pain relief with PCA with opiates and oral analgesics would not be adequate. After counselling the patient pre-operative about the technique of regional anaesthesia techniques, including epidural catheterization and rectus sheath catheter placement, their benefits, and potential complications, informed consent was obtained. Epidural catheter was placed awake, and general anaesthesia was then induced. Epidural infusion of local anaesthetics was started prior to surgical incision and was continued till 60 hours into the postoperative period. Before skin closure, the surgeons inserted commercially available rectus sheath catheters bilaterally along the midline incision used for laparotomy. After 46 hours post-op, local anaesthetic infusion via these was started as bridging while the epidural infusion rate was tapered off. The epidural catheter was removed at 75 hours. Elastomeric pumps were used to provide local anaesthetic infusion with the ability to vary infusion rates. Acute pain service followed up the patient’s vital signs and effectiveness of pain relief twice daily or more frequently as required. Rectus sheath catheters were removed 137 hours post-op. The patient had good post-op analgesia with the minimal additional analgesic requirement. For the most part, the visual analog score (VAS) for pain remained at 1-3 on a scale of 1 to 10. Haemodynamics remained stable, and surgical recovery was as expected. Minimal opiate requirement after an extensive laparotomy also translates to the early return of intestinal motility. Our experience was encouraging, and we are hoping to extend this combination of two regional anaesthetic techniques to patients undergoing similar surgeries. Epidural analgesia is denser and offers excellent pain relief for both visceral and somatic pain in the first few days after surgery. As the pain intensity grows weaker, rectus sheath block and oral analgesics provide almost the same degree of pain relief after the epidural catheter is removed. We discovered that the background infusion of local anaesthetic down the rectus sheath catherter largely reduced the requirement for other classes of analgesics. We aim to study this further with a larger patient cohort and hope that it may become an established clinical practice that benefits patients everywhere.

Keywords: rectus sheath, epidural infusion, post operative analgesia, elastomeric

Procedia PDF Downloads 134
3131 A New Verification Based Congestion Control Scheme in Mobile Networks

Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj

Abstract:

A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.

Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain

Procedia PDF Downloads 441
3130 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 439
3129 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
3128 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks

Procedia PDF Downloads 157
3127 Mobility Management via Software Defined Networks (SDN) in Vehicular Ad Hoc Networks (VANETs)

Authors: Bilal Haider, Farhan Aadil

Abstract:

A Vehicular Ad hoc Network (VANET) provides various services to end-users traveling on the road at high speeds. However, this high-speed mobility of mobile nodes can cause frequent service disruptions. Various mobility management protocols exist for managing node mobility, but due to their centralized nature, they tend to suffer in the VANET environment. In this research, we proposed a distributed mobility management protocol using software-defined networks (SDN) for VANETs. Instead of relying on a centralized mobility anchor, the mobility functionality is distributed at multiple infrastructural nodes. The protocol is based on the classical Proxy Mobile IP version 6 (PMIPv6). It is evident from simulation results that this work has improved the network performance with respect to nodes throughput, delay, and packet loss.

Keywords: SDN, VANET, mobility management, optimization

Procedia PDF Downloads 170
3126 Algorithmic Fault Location in Complex Gas Networks

Authors: Soban Najam, S. M. Jahanzeb, Ahmed Sohail, Faraz Idris Khan

Abstract:

With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources.

Keywords: FLA, fault location analysis, GDN, gas distribution network, GIS, geographic information system, NMS, network Management system, OMS, outage management system, SSGC, Sui Southern gas company, UFG, unaccounted for gas

Procedia PDF Downloads 627
3125 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO

Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero

Abstract:

Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.

Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control

Procedia PDF Downloads 363
3124 Investigating the Organizational Capacity of Communities Affecting Water Supply Resilience

Authors: Behrooz Balaei, Suzanne Wilkinson, Regan Potangaroa, Larry Abel, Philip McFarlane

Abstract:

Water supply system failure has serious direct and indirect effects on people wellbeing. Post-disaster water system serviceability depends on a variety of factors from technical characteristics to social, economic, and organizational attributes of communities. This paper tests the organizational factors affecting water supply resilience to outline how these factors contributed to previous disasters. To do so, a framework is briefly introduced in this study to provide a clear guide to identify the significant relevant organizational factors. Then the factors affecting water serviceability following a disaster are outlines. Next, these factors are measured in the case of Tropical Cyclone Pam, which hit Vanuatu in March 2015. Reviewing the existing literature has also been carried out to obtain a comprehensive understanding of the background A site visit and a series of interviews have also been undertaken following the cyclone to collect site-specific data and information. In the end, the organizational factors were ranked to enable decision makers to identify significance of each factor compared to the others.

Keywords: water supply, resilience, organizational capacity, Vanuatu, Tropical Cyclone Pam

Procedia PDF Downloads 129
3123 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks

Authors: P. R. Dushantha Chaminda, Peng Kai

Abstract:

In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.

Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM

Procedia PDF Downloads 214
3122 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction

Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade

Abstract:

Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.

Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction

Procedia PDF Downloads 392
3121 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
3120 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas

Authors: Ibrahim Obeidat

Abstract:

Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.

Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay

Procedia PDF Downloads 282
3119 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 283
3118 The Addition of Opioids to Bupivacaine in Bilateral Infraorbital Nerve Block for Postoperative Pain Relief in Paediatric Patients for Cleft Lip Repair-Comparative Effects of Pethidine and Fentanyl: A Prospective Randomized Double Blind Study

Authors: Mrudula Kudtarkar, Rajesh Mane

Abstract:

Introduction: Cleft lip repair is one of the common surgeries performed in India and the usual method used for post-operative analgesia is perioperative opioids and NSAIDs. There has been an increase in use of regional techniques and Opioids are the common adjuvants but their efficacy and safety have not been studied extensively in children. Aim: A prospective, randomized, double-blind study was done to compare the efficacy, duration and safety of intraoral infraorbital nerve block on post-operative pain relief using bupivacaine alone or in combination with fentanyl or pethidine in paediatric cleft lip repair. Methodology: 45 children between the age group 5 – 60 months undergoing cleft lip surgery randomly allocated into 3 groups of 15 each received bilateral intraoral infraorbital nerve block with 0.75ml of solution. Group B received 0.25% bupivacaine; group P received 0.25% bupivacaine with 0.25mg/kg pethidine, group F received 0.25% bupivacaine with 0.25microgm/kg fentanyl. Sedation after recovery, post-operative pain intensity and duration of post-operative analgesia were assessed using Modified Hannallah Pain Score. Results: The mean duration of analgesia was 17.8 hrs in Group B, 23.53 hrs in Group F and 35.13 hrs in Group P. There was statistically significant difference between the means of the three groups- ANOVA (p < 0.05). Conclusion: Thus we conclude that addition of fentanyl or pethidine to bupivacaine for Bilateral Intraoral Infraorbital Nerve Block prolong the duration of analgesia with no complications and can be used safely in paediatric patients.

Keywords: cleft lip, infraorbital block, NSAIDS, Opiods

Procedia PDF Downloads 237
3117 From the Sharing Economy to Social Manufacturing: Analyzing Collaborative Service Networks in the Manufacturing Domain

Authors: Babak Mohajeri

Abstract:

In recent years, the conventional business model of ownership has been changed towards accessibility in a variety of markets. Two trends can be observed in the evolution of this rental-like business model. Firstly, the technological development that enables the emergence of new business models. These new business models increasingly become agile and flexible. For example Spotify, an online music stream company provides consumers access to over millions of music tracks, conveniently through the smartphone, tablet or computer. Similarly, Car2Go, the car sharing company accesses its members with flexible and nearby sharing cars. The second trend is the increasing communication and connections via social networks. This trend enables a shift to peer-to-peer accessibility based business models. Conventionally, companies provide access for their customers to own companies products or services. In peer-to-peer model, nonetheless, companies facilitate access and connection across their customers to use other customers owned property or skills, competencies or services .The is so-called the sharing economy business model. The aim of this study is to investigate into a new and emerging type of the sharing economy model in which role of customers and service providers may dramatically change. This new model is called Collaborative Service Networks. We propose a mechanism for Collaborative Service Networks business model. Uber and Airbnb, two successful growing companies, have been selected for our case studies and their business models are analyzed. Finally, we study the emergence of the collaborative service networks in the manufacturing domain. Our finding results to a new manufacturing paradigm called social manufacturing.

Keywords: sharing economy, collaborative service networks, social manufacturing, manufacturing development

Procedia PDF Downloads 317
3116 Simulation as a Problem-Solving Spotter for System Reliability

Authors: Wheyming Tina Song, Chi-Hao Hong, Peisyuan Lin

Abstract:

An important performance measure for stochastic manufacturing networks is the system reliability, defined as the probability that the production output meets or exceeds a specified demand. The system parameters include the capacity of each workstation and numbers of the conforming parts produced in each workstation. We establish that eighteen archival publications, containing twenty-one examples, provide incorrect values of the system reliability. The author recently published the Song Rule, which provides the correct analytical system-reliability value; it is, however, computationally inefficient for large networks. In this paper, we use Monte Carlo simulation (implemented in C and Flexsim) to provide estimates for the above-mentioned twenty-one examples. The simulation estimates are consistent with the analytical solution for small networks but is computationally efficient for large networks. We argue here for three advantages of Monte Carlo simulation: (1) understanding stochastic systems, (2) validating analytical results, and (3) providing estimates even when analytical and numerical approaches are overly expensive in computation. Monte Carlo simulation could have detected the published analysis errors.

Keywords: Monte Carlo simulation, analytical results, leading digit rule, standard error

Procedia PDF Downloads 362
3115 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 14
3114 Disaster Education and Children with Visual Impairment

Authors: Vassilis Argyropoulos, Magda Nikolaraizi, Maria Papazafiri

Abstract:

This study describes a series of learning workshops, which took place within CUIDAR project. The workshops aimed to empower children to share their experiences and views in relation to natural hazards and disasters. The participants in the workshops were ten primary school students who had severe visual impairments or multiple disabilities and visual impairments (MDVI). The main objectives of the workshops were: a) to promote access of the children through the use of appropriate educational material such as texts in braille, enlarged text, tactile maps and the implementation of differentiated instruction, b) to make children aware regarding their rights to have access to information and to participate in planning and decision-making especially in relation to disaster education programs, and c) to encourage children to have an active role during the workshops through child-led and experiential learning activities. The children expressed their views regarding the meaning of hazards and disasters. Following, they discussed their experiences and emotions regarding natural hazards and disasters, and they chose to place the emphasis on a hazard, which was more pertinent to them, their community and their region, namely fires. Therefore, they recalled fires that have caused major disasters, and they discussed about the impact that these fires had on their community or on their country. Furthermore, they were encouraged to become aware regarding their own role and responsibility to prevent a fire or get prepared and know how to behave if a fire occurs. They realized that prevention and preparation are a matter of personal responsibility. They also felt the responsibility to inform their own families. Finally, they met important people involved in fire protection such as rescuers and firefighters and had the opportunity to carry dialogues. In conclusion, through child led workshops, experiential and accessible activities, the students had the opportunity to share their own experiences, to express their views and their questions, to broaden their knowledge and to realize their personal responsibility in disaster risk reduction, specifically in relation to fires.

Keywords: accessibility, children, disasters, visual impairment

Procedia PDF Downloads 213
3113 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis

Abstract:

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Keywords: community resilience, natural disasters, place attachment, wildfire

Procedia PDF Downloads 103
3112 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 452
3111 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 194
3110 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation

Procedia PDF Downloads 443
3109 System Survivability in Networks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

We consider the problem of attacks on networks. We define the concept of system survivability in networks in the presence of intelligent threats. Our setting of the problem assumes a flow to be sent from one source node to a destination node. The attacker attempts to disable the network by preventing the flow to reach its destination while the defender attempts to identify the best path-set to use to maximize the chance of arrival of the flow to the destination node. Our concept is shown to be different from the classical concept of network reliability. We distinguish two types of network survivability related to the defender and to the attacker of the network, respectively. We prove that the defender-based-network survivability plays the role of a lower bound while the attacker-based-network survivability plays the role of an upper bound of network reliability. We also prove that both concepts almost never agree nor coincide with network reliability. Moreover, we use the shortest-path problem to determine the defender-based-network survivability and the min-cut problem to determine the attacker-based-network survivability. We extend the problem to a variety of models including the minimum-spanning-tree problem and the multiple source-/destination-network problems.

Keywords: defense/attack strategies, information, networks, reliability, survivability

Procedia PDF Downloads 393
3108 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 353
3107 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 222
3106 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland

Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig

Abstract:

Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.

Keywords: collaboration, healthcare networks, palliative care, Switzerland

Procedia PDF Downloads 268
3105 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 733