Search results for: boundary%20layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1289

Search results for: boundary%20layer

779 VISMA: A Method for System Analysis in Early Lifecycle Phases

Authors: Walter Sebron, Hans Tschürtz, Peter Krebs

Abstract:

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Keywords: analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety

Procedia PDF Downloads 223
778 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory

Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov

Abstract:

The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.

Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field

Procedia PDF Downloads 498
777 Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room

Authors: Homin Kim, Hyungjo Byun, Jinyoung Do, Yongil Lee, Hyunho Shin, Seungbae Lee

Abstract:

Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed.

Keywords: acoustics, CFD, engine room design, mobile hydraulics

Procedia PDF Downloads 324
776 Emerging Virtual Linguistic Landscape Created by Members of Language Community in TikTok

Authors: Kai Zhu, Shanhua He, Yujiao Chang

Abstract:

This paper explores the virtual linguistic landscape of an emerging virtual language community in TikTok, a language community realizing immediate and non-immediate communication without a precise Spatio-temporal domain or a specific socio-cultural boundary or interpersonal network. This kind of language community generates a large number and various forms of virtual linguistic landscape, with which we conducted a virtual ethnographic survey together with telephone interviews to collect data from coping. We have been following two language communities in TikTok for several months so that we can illustrate the composition of the two language communities and some typical virtual language landscapes in both language communities first. Then we try to explore the reasons why and how they are formed through the organization, transcription, and analysis of the interviews. Our analysis reveals the richness and diversity of the virtual linguistic landscape, and finally, we summarize some of the characteristics of this language community.

Keywords: virtual linguistic landscape, virtual language community, virtual ethnographic survey, TikTok

Procedia PDF Downloads 101
775 Flexible Arm Manipulator Control for Industrial Tasks

Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu

Abstract:

This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.

Keywords: distributed model, flexible manipulator, observer, robot control

Procedia PDF Downloads 319
774 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 489
773 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 106
772 Drying Modeling of Banana Using Cellular Automata

Authors: M. Fathi, Z. Farhaninejad, M. Shahedi, M. Sadeghi

Abstract:

Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.

Keywords: banana, cellular automata, drying, modeling

Procedia PDF Downloads 436
771 Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field

Authors: Brahim Mahfoud, Rachid Bessaïh

Abstract:

In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri.

Keywords: swirling, counter-rotating end disks, magnetic field, oscillatory, cylinder

Procedia PDF Downloads 322
770 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 170
769 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model

Authors: K. Khanafer

Abstract:

The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.

Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical

Procedia PDF Downloads 269
768 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 385
767 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam

Authors: Mohammad Tahmasebipour, Hosein Salarpour

Abstract:

Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.

Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method

Procedia PDF Downloads 458
766 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 359
765 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 364
764 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 238
763 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.

Keywords: graphene, nanoporous, Young's modulus, shear modulus

Procedia PDF Downloads 396
762 Electron Beam Effects on Kinetic Alfven Waves in the Cold Homogenous Plasma

Authors: Jaya Shrivastava

Abstract:

The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, growth/damping rate and associated currents in the presence of electron beam in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. The plasma parameters appropriate to plasma sheet boundary layer are used. It is found that downward electron beam affects the dispersion relation, growth/damping-rate and associated currents in cold electron limit.

Keywords: magnetospheric physics, plasma waves and instabilities, electron beam, space plasma physics, wave-particle interactions

Procedia PDF Downloads 392
761 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol

Authors: S. Vasundra, D. Venkatesh

Abstract:

Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.

Keywords: wireless networks, ant colony optimization, load balancing, architecture

Procedia PDF Downloads 420
760 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 167
759 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 423
758 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 200
757 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: cell mechanics, computational models, continuum approach, mechanical models

Procedia PDF Downloads 362
756 Three Dimensional Analysis of Cubesat Thermal Vacuum Test

Authors: Maged Assem Soliman Mossallam

Abstract:

Thermal vacuum testing target is to qualify the space system and ensure its operability under harsh space environment. The functionality of the cubesat was checked at extreme orbit conditions. Test was performed for operational and nonoperational modes. Analysis is done to simulate the cubesat thermal cycling inside thermal vacuum chamber. Comsol Multiphysics finite element is used to solve three dimensional problem for the cubesat inside TVAC. Three dimensional CAD model is done using Autodesk Inventor program. The boundary conditions were applied from the actual shroud temperature. The input heat load variation with time is considered to solve the transient three dimensional problem. Results show that the simulated temperature profiles are within an acceptable range from the real testing data.

Keywords: cubesat, thermal vacuum test, testing simulation, finite element analysis

Procedia PDF Downloads 149
755 Technology Computer Aided Design Simulation of Space Charge Limited Conduction in Polycrystalline Thin Films

Authors: Kunj Parikh, S. Bhattacharya, V. Natarajan

Abstract:

TCAD numerical simulation is one of the most tried and tested powerful tools for designing devices in semiconductor foundries worldwide. It has also been used to explain conduction in organic thin films where the processing temperature is often enough to make homogeneous samples (often imperfect, but homogeneously imperfect). In this report, we have presented the results of TCAD simulation in multi-grain thin films. The work has addressed the inhomogeneity in one dimension, but can easily be extended to two and three dimensions. The effect of grain boundaries has mainly been approximated as barriers located at the junction between two adjacent grains. The effect of the value of grain boundary barrier, the bulk traps, and the measurement temperature have been investigated.

Keywords: polycrystalline thin films, space charge limited conduction, Technology Computer-Aided Design (TCAD) simulation, traps

Procedia PDF Downloads 213
754 Nano Generalized Topology

Authors: M. Y. Bakeir

Abstract:

Rough set theory is a recent approach for reasoning about data. It has achieved a large amount of applications in various real-life fields. The main idea of rough sets corresponds to the lower and upper set approximations. These two approximations are exactly the interior and the closure of the set with respect to a certain topology on a collection U of imprecise data acquired from any real-life field. The base of the topology is formed by equivalence classes of an equivalence relation E defined on U using the available information about data. The theory of generalized topology was studied by Cs´asz´ar. It is well known that generalized topology in the sense of Cs´asz´ar is a generalization of the topology on a set. On the other hand, many important collections of sets related with the topology on a set form a generalized topology. The notion of Nano topology was introduced by Lellis Thivagar, which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. The purpose of this paper is to introduce a new generalized topology in terms of rough set called nano generalized topology

Keywords: rough sets, topological space, generalized topology, nano topology

Procedia PDF Downloads 427
753 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary

Authors: Mark Watson, J.-F. Bousquet, Adam Forget

Abstract:

A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.

Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld

Procedia PDF Downloads 123
752 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 385
751 Increase of Energy Efficiency by Means of Application of Active Bearings

Authors: Alexander Babin, Leonid Savin

Abstract:

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Keywords: active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing

Procedia PDF Downloads 280
750 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique

Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail

Abstract:

Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.

Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration

Procedia PDF Downloads 337