Search results for: Random Kernel Density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5654

Search results for: Random Kernel Density

314 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 95
313 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 65
312 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 232
311 Comparing Perceived Restorativeness in Natural and Urban Environment: A Meta-Analysis

Authors: Elisa Menardo, Margherita Pasini, Margherita Brondino

Abstract:

A growing body of empirical research from different areas of inquiry suggests that brief contact with natural environment restore mental resources. The Attention Restoration Theory (ART) is the widespread used and empirical founded theory developed to explain why exposure to nature helps people to recovery cognitive resources. It assumes that contact with nature allows people to free (and then recovery) voluntary attention resources and thus allows them to recover from a cognitive fatigue situation. However, it was suggested that some people could have more cognitive benefit after exposure to urban environment. The objective of this study is to report the results of a meta-analysis on studies (peer-reviewed articles) comparing the restorativeness (the quality to be restorative) perceived in natural environments than those perceived in urban environments. This meta-analysis intended to estimate how much nature environments (forests, parks, boulevards) are perceived to be more restorativeness than urban ones (i.e., the magnitude of the perceived restorativeness’ difference). Moreover, given the methodological difference between study, it studied the potential role of moderator variables as participants (student or other), instrument used (Perceived Restorativeness Scale or other), and procedure (in laboratory or in situ). PsycINFO, PsycARTICLES, Scopus, SpringerLINK, Web of Science online database were used to identify all peer-review articles on restorativeness published to date (k = 167). Reference sections of obtained papers were examined for additional studies. Only 22 independent studies (with a total of 1371 participants) met inclusion criteria (direct exposure to environment, comparison between one outdoor environment with natural element and one without natural element, and restorativeness measured by self-report scale) and were included in meta-analysis. To estimate the average effect size, a random effect model (Restricted Maximum-likelihood estimator) was used because the studies included in the meta-analysis were conducted independently and using different methods in different populations, so no common effect-size was expected. The presence of publication bias was checked using trim and fill approach. Univariate moderator analysis (mixed effect model) were run to determine whether the variable coded moderated the perceived restorativeness difference. Results show that natural environments are perceived to be more restorativeness than urban environments, confirming from an empirical point of view what is now considered a knowledge gained in environmental psychology. The relevant information emerging from this study is the magnitude of the estimated average effect size, which is particularly high (d = 1.99) compared to those that are commonly observed in psychology. Significant heterogeneity between study was found (Q(19) = 503.16, p < 0.001;) and studies’ variability was very high (I2[C.I.] = 96.97% [94.61 - 98.62]). Subsequent univariate moderator analyses were not significant. Methodological difference (participants, instrument, and procedure) did not explain variability between study. Other methodological difference (e.g., research design, environment’s characteristics, light’s condition) could explain this variability between study. In the mine while, studies’ variability could be not due to methodological difference but to individual difference (age, gender, education level) and characteristics (connection to nature, environmental attitude). Furthers moderator analysis are working in progress.

Keywords: meta-analysis, natural environments, perceived restorativeness, urban environments

Procedia PDF Downloads 169
310 Characterization of Himalayan Phyllite with Reference to Foliation Planes

Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar

Abstract:

Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.

Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region

Procedia PDF Downloads 59
309 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 318
308 Public-Private Partnership for Critical Infrastructure Resilience

Authors: Anjula Negi, D. T. V. Raghu Ramaswamy, Rajneesh Sareen

Abstract:

Road infrastructure is emphatically one of the top most critical infrastructure to the Indian economy. Road network in the country of around 3.3 million km is the second largest in the world. Nationwide statistics released by Ministry of Road, Transport and Highways reveal that every minute an accident happens and one death every 3.7 minutes. This reported scale in terms of safety is a matter of grave concern, and economically represents a national loss of 3% to the GDP. Union Budget 2016-17 has allocated USD 12 billion annually for development and strengthening of roads, an increase of 56% from last year. Thus, highlighting the importance of roads as critical infrastructure. National highway alone represent only 1.7% of the total road linkages, however, carry over 40% of traffic. Further, trends analysed from 2002 -2011 on national highways, indicate that in less than a decade, a 22 % increase in accidents have been reported, but, 68% increase in death fatalities. Paramount inference is that accident severity has increased with time. Over these years many measures to increase road safety, lessening damage to physical assets, reducing vulnerabilities leading to a build-up for resilient road infrastructure have been taken. In the context of national highway development program, policy makers proposed implementation of around 20 % of such road length on PPP mode. These roads were taken up on high-density traffic considerations and for qualitative implementation. In order to understand resilience impacts and safety parameters, enshrined in various PPP concession agreements executed with the private sector partners, such highway specific projects would be appraised. This research paper would attempt to assess such safety measures taken and the possible reasons behind an increase in accident severity through these PPP case study projects. Delving further on safety features to understand policy measures adopted in these cases and an introspection on reasons of severity, whether an outcome of increased speeds, faulty road design and geometrics, driver negligence, or due to lack of discipline in following lane traffic with increased speed. Assessment exercise would study these aspects hitherto to PPP and post PPP project structures, based on literature review and opinion surveys with sectoral experts. On the way forward, it is understood that the Ministry of Road, Transport and Highway’s estimate for strengthening the national highway network is USD 77 billion within next five years. The outcome of this paper would provide an understanding of resilience measures adopted, possible options for accessible and safe road network and its expansion to policy makers for possible policy initiatives and funding allocation in securing critical infrastructure.

Keywords: national highways, policy, PPP, safety

Procedia PDF Downloads 257
307 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.

Keywords: heterophony, modalism, serialism, synchrony, syntax

Procedia PDF Downloads 343
306 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 49
305 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
304 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 77
303 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 89
302 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU

Authors: Ali Abdul Kadhim, Fue Lien

Abstract:

Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.

Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model

Procedia PDF Downloads 207
301 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 323
300 Properties Optimization of Keratin Films Produced by Film Casting and Compression Moulding

Authors: Mahamad Yousif, Eoin Cunningham, Beatrice Smyth

Abstract:

Every year ~6 million tonnes of feathers are produced globally. Due to feathers’ low density and possible contamination with pathogens, their disposal causes health and environmental problems. The extraction of keratin, which represents >90% of feathers’ dry weight, could offer a solution due to its wide range of applications in the food, medical, cosmetics, and biopolymer industries. One of these applications is the production of biofilms which can be used for packaging, edible films, drug delivery, wound healing etc. Several studies in the last two decades investigated keratin film production and its properties. However, the effects of many parameters on the properties of the films remain to be investigated including the extraction method, crosslinker type and concentration, and the film production method. These parameters were investigated in this study. Keratin was extracted from chicken feathers using two methods, alkaline extraction with 0.5 M NaOH at 80 °C or sulphitolysis extraction with 0.5 M sodium sulphite, 8 M urea, and 0.25-1 g sodium dodecyl sulphate (SDS) at 100 °C. The extracted keratin was mixed with different types and concentrations of plasticizers (glycerol and polyethylene glycol) and crosslinkers (formaldehyde (FA), glutaraldehyde, cinnamaldehyde, glyoxal, and 1,4-Butanediol diglycidyl ether (BDE)). The mixtures were either cast in a mould or compression moulded to produce films. For casting, keratin powder was initially dissolved in water to form a 5% keratin solution and the mixture was dried in an oven at 60 °C. For compression moulding, 10% water was added and the compression moulding temperature and pressure were in the range of 60-120 °C and 10-30 bar. Finally, the tensile properties, solubility, and transparency of the films were analysed. The films prepared using the sulphitolysis keratin had superior tensile properties to the alkaline keratin and formed successfully with lower plasticizer concentrations. Lowering the SDS concentration from 1 to 0.25 g/g feathers improved all the tensile properties. All the films prepared without crosslinkers were 100% water soluble but adding crosslinkers reduced solubility to as low as 21%. FA and BDE were found to be the best crosslinkers increasing the tensile strength and elongation at break of the films. Higher compression moulding temperature and pressure lowered the tensile properties of the films; therefore, 80 °C and 10 bar were considered to be the optimal compression moulding temperature and pressure. Nevertheless, the films prepared by casting had higher tensile properties than compression moulding but were less transparent. Two optimal films, prepared by film casting, were identified and their compositions were: (a) Sulphitolysis keratin, 20% glycerol, 10% FA, and 10% BDE. (b) Sulphitolysis keratin, 20% glycerol, and 10% BDE. Their tensile strength, elongation at break, Young’s modulus, solubility, and transparency were: (a) 4.275±0.467 MPa, 86.12±4.24%, 22.227±2.711 MPa, 21.34±1.11%, and 8.57±0.94* respectively. (b) 3.024±0.231 MPa, 113.65±14.61%, 10±1.948 MPa, 25.03±5.3%, and 4.8±0.15 respectively. A higher value indicates that the film is less transparent. The extraction method, film composition, and production method had significant influence on the properties of keratin films and should therefore be tailored to meet the desired properties and applications.

Keywords: compression moulding, crosslinker, film casting, keratin, plasticizer, solubility, tensile properties, transparency

Procedia PDF Downloads 33
299 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 147
298 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution

Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani

Abstract:

The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.

Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant

Procedia PDF Downloads 89
297 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 75
296 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality

Authors: Alisa Salimova, Jiane Zuo, Christopher Homer

Abstract:

The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.

Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing

Procedia PDF Downloads 111
295 Influence of the Nature of Plants on Drainage, Purification Performance and Quality of Biosolids on Faecal Sludge Planted Drying Beds in Sub-Saharan Climate Conditions

Authors: El Hadji Mamadou Sonko, Mbaye Mbéguéré, Cheikh Diop, Linda Strande

Abstract:

In new approaches that are being developed for the treatment of sludge, the valorization of by-product is increasingly encouraged. In this perspective, Echinochloa pyramidalis has been successfully tested in Cameroon. Echinochloa pyramidalis is an efficient forage plant in the treatment of faecal sludge. It provides high removal rates and biosolids of high agronomic value. Thus in order to advise the use of this plant in planted drying beds in Senegal its comparison with the plants long been used in the field deserves to be carried out. That is the aim of this study showing the influence of the nature of the plants on the drainage, the purifying performances and the quality of the biosolids. Echinochloa pyramidalis, Typha australis, and Phragmites australis are the three macrophytes used in this study. The drainage properties of the beds were monitored through the frequency of clogging, the percentage of recovered leachate and the dryness of the accumulated sludge. The development of plants was followed through the measurement of the density. The purification performances were evaluated from the incoming raw sludge flows and the outflows of leachate for parameters such as Total Solids (TS), Total Suspended Solids (TSS), Total Volatile Solids (TVS), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₄⁺), Nitrate (NO₃⁻), Total Phosphorus (TP), Orthophosphorus (PO₄³⁻) and Ascaris eggs. The quality of the biosolids accumulated on the beds was measured after 3 months of maturation for parameters such as dryness, C/N ratio NH₄⁺/NO₃⁻ ratio, ammonia, Ascaris eggs. The results have shown that the recovered leachate volume is about 40.4%; 45.6% and 47.3%; the dryness about 41.7%; 38.7% and 28.7%, and clogging frequencies about 6.7%; 8.2% and 14.2% on average for the beds planted with Echinochloa pyramidalis, Typha australis and Phragmites australis respectively. The plants of Echinochloa pyramidalis (198.6 plants/m²) and Phragmites australis (138 plants/m²) have higher densities than Typha australis (90.3 plants/m²). The nature of the plants has no influence on the purification performance with reduction percentages around 80% or more for all the parameters followed whatever the nature of the plants. However, the concentrations of these various leachate pollutants are above the limit values of the Senegalese standard NS 05-061 for the release into the environment. The biosolids harvested after 3 months of maturation are all mature with C/N ratios around 10 for all the macrophytes. The NH₄⁺/NO₃⁻ ratio is lower than 1 except for the biosolids originating from the Echinochloa pyramidalis beds. The ammonia is also less than 0.4 g/kg except for biosolids from Typha australis beds. Biosolids are also rich in mineral elements. Their concentrations of Ascaris eggs are higher than the WHO recommendations despite a percentage of inactivation around 80%. These biosolids must be stored for an additional time or composted. From these results, the use of Echinochloa pyramidalis as the main macrophyte can be recommended in the various drying beds planted in sub-Saharan climate conditions.

Keywords: faecal sludge, nature of plants, quality of biosolids, treatment performances

Procedia PDF Downloads 170
294 Occurrence and Habitat Status of Osmoderma barnabita in Lithuania

Authors: D. Augutis, M. Balalaikins, D. Bastyte, R. Ferenca, A. Gintaras, R. Karpuska, G. Svitra, U. Valainis

Abstract:

Osmoderma species complex (consisting of Osmoderma eremita, O. barnabita, O. lassallei and O. cristinae) is a scarab beetle serving as indicator species in nature conservation. Osmoderma inhabits cavities containing sufficient volume of wood mould usually caused by brown rot in veteran deciduous trees. As the species, having high demands for the habitat quality, they indicate the suitability of the habitat for a number of other specialized saproxylic species. Since typical habitat needed for Osmoderma and other species associated with hollow veteran trees is rapidly declining, the species complex is protected under various legislation, such as Bern Convention, EU Habitats Directive and the Red Lists of many European states. Natura 2000 sites are the main tool for conservation of O. barnabita in Lithuania, currently 17 Natura 2000 sites are designated for the species, where monitoring is implemented once in 3 years according to the approved methodologies. Despite these monitoring efforts in species reports, provided to EU according to the Article 17 of the Habitats Directive, it is defined on the national level, that overall assessment of O. barnabita is inadequate and future prospects are poor. Therefore, research on the distribution and habitat status of O. barnabita was launched on the national level in 2016, which was complemented by preparatory actions of LIFE OSMODERMA project. The research was implemented in the areas equally distributed in the whole area of Lithuania, where O. barnabita was previously not observed, or not observed in the last 10 years. 90 areas, such as Habitats of European importance (9070 Fennoscandian wooded pastures, 9180 Tilio-Acerion forests of slopes, screes, and ravines), Woodland key habitats (B1 broad-leaved forest, K1 single giant tree) and old manor parks, were chosen for the research after review of habitat data from the existing national databases. The first part of field inventory of the habitats was carried out in 2016 and 2017 autumn and winter seasons, when relative abundance of O. barnabita was estimated according to larval faecal pellets in the tree cavities or around the trees. The state of habitats was evaluated according to the density of suitable and potential trees, percentage of not overshadowed trees and amount of undergrowth. The second part of the field inventory was carried out in the summer with pheromone traps baited with (R)-(+)-γ –decalactone. Results of the research show not only occurrence and habitat status of O. barnabita, but also help to clarify O. barnabita habitat requirements in Lithuania, define habitat size, its structure and distribution. Also, it compares habitat needs between the regions in Lithuania and inside and outside Natura 2000 areas designated for the species.

Keywords: habitat status, insect conservation, Osmoderma barnabita, veteran trees

Procedia PDF Downloads 137
293 Modification of Magneto-Transport Properties of Ferrimagnetic Mn₄N Thin Films by Ni Substitution and Their Magnetic Compensation

Authors: Taro Komori, Toshiki Gushi, Akihito Anzai, Taku Hirose, Kaoru Toko, Shinji Isogami, Takashi Suemasu

Abstract:

Ferrimagnetic antiperovskite Mn₄₋ₓNiₓN thin film exhibits both small saturation magnetization and rather large perpendicular magnetic anisotropy (PMA) when x is small. Both of them are suitable features for application to current induced domain wall motion devices using spin transfer torque (STT). In this work, we successfully grew antiperovskite 30-nm-thick Mn₄₋ₓNiₓN epitaxial thin films on MgO(001) and STO(001) substrates by MBE in order to investigate their crystalline qualities and magnetic and magneto-transport properties. Crystalline qualities were investigated by X-ray diffraction (XRD). The magnetic properties were measured by vibrating sample magnetometer (VSM) at room temperature. Anomalous Hall effect was measured by physical properties measurement system. Both measurements were performed at room temperature. Temperature dependence of magnetization was measured by VSM-Superconducting quantum interference device. XRD patterns indicate epitaxial growth of Mn₄₋ₓNiₓN thin films on both substrates, ones on STO(001) especially have higher c-axis orientation thanks to greater lattice matching. According to VSM measurement, PMA was observed in Mn₄₋ₓNiₓN on MgO(001) when x ≤ 0.25 and on STO(001) when x ≤ 0.5, and MS decreased drastically with x. For example, MS of Mn₃.₉Ni₀.₁N on STO(001) was 47.4 emu/cm³. From the anomalous Hall resistivity (ρAH) of Mn₄₋ₓNiₓN thin films on STO(001) with the magnetic field perpendicular to the plane, we found out Mr/MS was about 1 when x ≤ 0.25, which suggests large magnetic domains in samples and suitable features for DW motion device application. In contrast, such square curves were not observed for Mn₄₋ₓNiₓN on MgO(001), which we attribute to difference in lattice matching. Furthermore, it’s notable that although the sign of ρAH was negative when x = 0 and 0.1, it reversed positive when x = 0.25 and 0.5. The similar reversal occurred for temperature dependence of magnetization. The magnetization of Mn₄₋ₓNiₓN on STO(001) increases with decreasing temperature when x = 0 and 0.1, while it decreases when x = 0.25. We considered that these reversals were caused by magnetic compensation which occurred in Mn₄₋ₓNiₓN between x = 0.1 and 0.25. We expect Mn atoms of Mn₄₋ₓNiₓN crystal have larger magnetic moments than Ni atoms do. The temperature dependence stated above can be explained if we assume that Ni atoms preferentially occupy the corner sites, and their magnetic moments have different temperature dependence from Mn atoms at the face-centered sites. At the compensation point, Mn₄₋ₓNiₓN is expected to show very efficient STT and ultrafast DW motion with small current density. What’s more, if angular momentum compensation is found, the efficiency will be best optimized. In order to prove the magnetic compensation, X-ray magnetic circular dichroism will be performed. Energy dispersive X-ray spectrometry is a candidate method to analyze the accurate composition ratio of samples.

Keywords: compensation, ferrimagnetism, Mn₄N, PMA

Procedia PDF Downloads 134
292 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation

Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft

Abstract:

The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.

Keywords: capture, CO2, ionic liquids, ionic poly(urethane)

Procedia PDF Downloads 234
291 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 435
290 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
289 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 20
288 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 300
287 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries

Authors: Fang Li, Jiazhao Wang, Jianmin Ma

Abstract:

The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.

Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries

Procedia PDF Downloads 140
286 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 139
285 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 147