Search results for: language learning
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: language learning

Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 105
The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians

Authors: Daphne Alroy-Thiberge

Abstract:

Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.

Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care

Procedia PDF Downloads 115
Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model

Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras

Abstract:

Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.

Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish

Procedia PDF Downloads 333
Optimizing the Readability of Orthopaedic Trauma Patient Education Materials Using ChatGPT-4

Authors: Oscar Covarrubias, Diane Ghanem, Christopher Murdock, Babar Shafiq

Abstract:

Introduction: ChatGPT is an advanced language AI tool designed to understand and generate human-like text. The aim of this study is to assess the ability of ChatGPT-4 to re-write orthopaedic trauma patient education materials at the recommended 6th-grade level. Methods: Two independent reviewers accessed ChatGPT-4 (chat.openai.com) and gave identical instructions to simplify the readability of provided text to a 6th-grade level. All trauma-related articles by the Orthopaedic Trauma Association (OTA) and American Academy of Orthopaedic Surgeons (AAOS) were sequentially provided. The academic grade level was determined using the Flesh-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE). Paired t-tests and Wilcox-rank sum tests were used to compare the FKGL and FRE between the ChatGPT-4 revised and original text. Inter-rater correlation coefficient (ICC) was used to assess variability in ChatGPT-4 generated text between the two reviewers. Results: ChatGPT-4 significantly reduced FKGL and increased FRE scores in the OTA (FKGL: 5.7±0.5 compared to the original 8.2±1.1, FRE: 76.4±5.7 compared to the original 65.5±6.6, p < 0.001) and AAOS articles (FKGL: 5.8±0.8 compared to the original 8.9±0.8, FRE: 76±5.5 compared to the original 56.7±5.9, p < 0.001). On average, 14.6% of OTA and 28.6% of AAOS articles required at least two revisions by ChatGPT-4 to achieve a 6th-grade reading level. ICC demonstrated poor reliability for FKGL (OTA 0.24, AAOS 0.45) and moderate reliability for FRE (OTA 0.61, AAOS 0.73). Conclusion: This study provides a novel, simple and efficient method using language AI to optimize the readability of patient education content which may only require the surgeon’s final proofreading. This method would likely be as effective for other medical specialties.

Keywords: artificial intelligence, AI, chatGPT, patient education, readability, trauma education

Procedia PDF Downloads 77
Improving the Students’ Writing Skill by Using Brainstorming Technique

Authors: M. Z. Abdul Rofiq Badril Rizal

Abstract:

This research is aimed to know the improvement of students’ English writing skill by using brainstorming technique. The technique used in writing is able to help the students’ difficulties in generating ideas and to lead the students to arrange the ideas well as well as to focus on the topic developed in writing. The research method used is classroom action research. The data sources of the research are an English teacher who acts as an observer and the students of class X.MIA5 consist of 35 students. The test result and observation are collected as the data in this research. Based on the research result in cycle one, the percentage of students who reach minimum accomplishment criteria (MAC) is 76.31%. It shows that the cycle must be continued to cycle two because the aim of the research has not accomplished, all of the students’ scores have not reached MAC yet. After continuing the research to cycle two and the weaknesses are improved, the process of teaching and learning runs better. At the test which is conducted in the end of learning process in cycle two, all of the students reach the minimum score and above 76 based on the minimum accomplishment criteria. It means the research has been successful and the percentage of students who reach minimum accomplishment criteria is 100%. Therefore, the writer concludes that brainstorming technique is able to improve the students’ English writing skill at the tenth grade of SMAN 2 Jember.

Keywords: brainstorming technique, improving, writing skill, knowledge and innovation engineering

Procedia PDF Downloads 369
Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 80
Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 596
Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 311
A Global Perspective on Neuropsychology: The Multicultural Neuropsychological Scale

Authors: Tünde Tifordiána Simonyi, Tímea Harmath-Tánczos

Abstract:

The primary aim of the current research is to present the significance of a multicultural perspective in clinical neuropsychology and to present the test battery of the Multicultural Neuropsychological Scale (MUNS). The method includes the MUNS screening tool that involves stimuli common to most cultures in the world. The test battery measures general cognitive functioning focusing on five cognitive domains (memory, executive function, language, visual construction, and attention) tested with seven subtests that can be utilized within a wide age range (15-89), and lower and higher education participants. It is a scale that is sensitive to mild cognitive impairments. Our study presents the first results with the Hungarian translation of MUNS on a healthy sample. The education range was 4-25 years of schooling. The Hungarian sample was recruited by snowball sampling. Within the investigated population (N=151) the age curve follows an inverted U-shaped curve regarding cognitive performance with a high load on memory. Age, reading fluency, and years of education significantly influenced test scores. The sample was tested twice within a 14-49 days interval to determine test-retest reliability, which is satisfactory. Besides the findings of the study and the introduction of the test battery, the article also highlights its potential benefits for both research and clinical neuropsychological practice. The importance of adapting, validating and standardizing the test in other languages besides the Hungarian language context is also stressed. This test battery could serve as a helpful tool in mapping general cognitive functions in psychiatric and neurological disorders regardless of the cultural background of the patients.

Keywords: general cognitive functioning, multicultural, MUNS, neuropsychological test battery

Procedia PDF Downloads 116
Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project

Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra

Abstract:

Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.

Keywords: service industry, customer service, machine learning, decision making, information platform

Procedia PDF Downloads 627
Automatic Detection Of Diabetic Retinopathy

Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira

Abstract:

Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.

Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification

Procedia PDF Downloads 14
Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 265
‘Women should not wear pants’: Reflections from Kenyan English Speakers in a Strait between American and British English

Authors: Vicky Khasandi-Telewa, Sinfree Makoni

Abstract:

This paper examines the lived experiences of Kenyans caught between the two main varieties of English and the communication challenges they often face. The paper aims to provide evidence for the challenges that Kenyan speakers of English have experienced as a result of the confluence between British English (BrE) and American English (AmE). The study is explorative thus, qualitative and a descriptive research design was used. The objectives were to describe the communication challenges Kenyans encounter due to the differences in grammar, pronunciation, vocabulary, and pragmatics between AmE and BrE and, to illuminate these variations to enable the Kenyan English learner to communicate appropriately. The purposive sample consisted of sixty five subjects, all who were from a top girls national high school in Kenya, therefore, many are in high-end positions nationally and internationally and well-travelled; in fact, seven are based in the USA, two in the United Kingdom and one lives in Australia. Using interviews, they were asked about their experiences with the different varieties of English, and their responses recorded. Autoethnography, a qualitative research method that involves introspection and cultural analysis, was also used. Thematic content analysis was used to extract the themes and group them for data analysis. The theoretical framework used is World Englishes by Kachru. The results indicate that there is indeed some communication breakdown due to linguistic varieties, but the differences are largely understood by speakers of the different varieties. Attitude plays a major role in communication challenges between the different Englishes, especially among teachers. The study urges acceptance of different varieties of English so long as communication takes place. This has implications for teaching English to Kenyan and speakers of other languages to whom English is taught as a Second Language or Foreign language.

Keywords: American english, british english, kenyan english, englishes, teaching of english to speakers of other languages (TeSOL)

Procedia PDF Downloads 74
Utilising Sociodrama as Classroom Intervention to Develop Sensory Integration in Adolescents who Present with Mild Impaired Learning

Authors: Talita Veldsman, Elzette Fritz

Abstract:

Many children attending special education present with sensory integration difficulties that hamper their learning and behaviour. These learners can benefit from therapeutic interventions as part of their classroom curriculum that can address sensory development and allow for holistic development to take place. A research study was conducted by utilizing socio-drama as a therapeutic intervention in the classroom in order to develop sensory integration skills. The use of socio-drama as therapeutic intervention proved to be a successful multi-disciplinary approach where education and psychology could build a bridge of growth and integration. The paper describes how socio-drama was used in the classroom and how these sessions were designed. The research followed a qualitative approach and involved six Afrikaans-speaking children attending special secondary school in the age group 12-14 years. Data collection included observations during the session, reflective art journals, semi-structured interviews with the teacher and informal interviews with the adolescents. The analysis found improved self-confidence, better social relationships, sensory awareness and self-regulation in the participants after a period of a year.

Keywords: education, sensory integration, sociodrama, classroom intervention, psychology

Procedia PDF Downloads 583
The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients

Authors: Lise Paesen, Marielle Leijten

Abstract:

People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.

Keywords: Alzheimer's disease, experimental design, language decline, writing process

Procedia PDF Downloads 280
Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 172
Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 78
Advocating for Indigenous Music in Latin American Music Education

Authors: Francisco Luis Reyes

Abstract:

European colonization had a profound impact on Latin America. The influence of the old continent can be perceived in the culture, religion, and language of the region as well as the beliefs and attitudes of the population. Music education is not an exception to this phenomenon. With Europeans controlling cultural life and erecting educational institutions across the continent for several centuries, Western European Art Music (WEAM) has polarized music learning in formal spaces. In contrast, the musics from the indigenous population, the African slaves, and the ones that emerged as a result of the cultural mélanges have largely been excluded from primary and secondary schooling. The purpose of this paper is to suggest the inclusion of indigenous music education in primary and secondary music education. The paper employs a philosophical inquiry in order to achieve this aim. Philosophical inquiry seeks to uncover and examine individuals' unconscious beliefs, principles, values, and assumptions to envision potential possibilities. This involves identifying and describing issues within current music teaching and learning practices. High-quality philosophical research tackles problems that are sufficiently narrow (addressing a specific aspect of a single complex topic), realistic (reflecting the experiences of music education), and significant (addressing a widespread and timely issue). Consequently, this methodological approach fits this topic, as the research addresses the omnipresence of WEAM in Latin American music education, the exclusion of indigenous music, and argues about the transformational impact said artistic expressions can have on practices in the region. The paper initially addresses how WEAM became ubiquitous in the region by recounting historical events, and adressing the issues other types of music face entering higher education. According to Shifres and Rosabal-Coto (2017) Latin America still upholds the musical heritage of their colonial period, and its formal music education institutions promote the European ontology instilled during European expansion. In accordance, the work of Reyes and Lorenzo-Quiles (2024), and Soler, Lorenzo-Quiles, and Hargreaves (2014), demonstrate how music institutions in the region uphold foreign narratives. Their studies show that music programs in Puerto Rico and Colombia instruct students in WEAM as well as require skills in said art form to enter the profession, just like other authors have argued (Cain & Walden, 2019, Walden, 2016). Subsequently, the research explains the issues faced by prospective music educators that do not practice WEAM. Roberts (1991a, 1991b, 1993), Green (2012) have found that music education students that do not adhere to the musical culture of their institution, are less likely to finish their degrees. Hence, practicioners of tradional musics might feel out of place in the environment. The ubiquity of WEAM and the exclusion of traditional musics of the region, provide the primary challenges to the inclusion of indigenous musics in formal spaces in primary and secondary education. The presentation then laids the framework for the inclusion indigenous music, and conclusively offers examples of how the musical expressions from the continent can improove the music education practices of the region. As an ending, the article highlights the benefits of these musics that are lacking in current practices.

Keywords: indigenous music education, postmodern music education, decolonization in music education, music education practice, Latin American music education

Procedia PDF Downloads 43
Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 181
Using Deep Learning in Lyme Disease Diagnosis

Authors: Teja Koduru

Abstract:

Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.

Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash

Procedia PDF Downloads 246
The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company

Authors: Shanshan Zhou, Massimo Battaglia

Abstract:

Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.

Keywords: community identity, disaster, identity, organizational learning

Procedia PDF Downloads 738
Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 86
Cultural Semiotics of the Traditional Costume from Banat’s Plain from 1870 to 1950 from Lotman’s Perspective

Authors: Glavan Claudiu

Abstract:

My paper focuses on the cultural semiotic interpretation of the Romanian costume from Banat region, from the perspective of Lotman’s semiotic theory of culture. Using Lotman’s system we will analyse the level of language, text and semiosphere within the unity of Banat’s traditional costume. In order to establish a common language and to communicate, the forms and chromatic compositions were expressed through symbols, which carried semantic meanings with an obvious significant semantic load. The symbols, used in this region, receive a strong specific ethnical mark in its representation, in its compositional and chromatic complexity, in accordance with the values and conceptions of life for the people living here. Thus the signs become a unifying force of this ethnic community. Associated with the signs, were the fabrics used in manufacturing the costumes and the careful selections of colours. For example, softer fabrics like silk associated with red vivid colours were used for young woman sending the message they ready to be married. The unity of these elements created the important message that you were sending to your community. The unity of the symbol, fabrics and choice of colours used on the costume carried out an important message like: marital status, social position, or even the village you belonged to. Using Lotman’s perspective on cultural semiotics we will read and analyse the symbolism of the traditional Romanian art from Banat. We will discover meaning in the codified existence of ancient solar symbols, symbols regarding fertility, religious symbols and very few heraldic symbols. Visual communication makes obvious the importance of semiotic value that the traditional costume is carrying from our ancestors.

Keywords: traditional costume, semiotics, Lotman’s theory of culture, traditional culture, signs and symbols

Procedia PDF Downloads 151
Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 458
A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 733
Evaluation of Technology Tools for Mathematics Instruction by Novice Elementary Teachers

Authors: Christopher J. Johnston

Abstract:

This paper presents the finding of a research study in which novice (first and second year) elementary teachers (grades Kindergarten – six) evaluated various mathematics Virtual Manipulatives, websites, and Applets (tools) for use in mathematics instruction. Participants identified the criteria they used for evaluating these types of resources and provided recommendations for or against five pre-selected tools. During the study, participants participated in three data collection activities: (1) A brief Likert-scale survey which gathered information about their attitudes toward technology use; (2) An identification of criteria for evaluating technology tools; and (3) A review of five pre-selected technology tools in light of their self-identified criteria. Data were analyzed qualitatively using four theoretical categories (codes): Software Features (41%), Mathematics (26%), Learning (22%), and Motivation (11%). These four theoretical categories were then grouped into two broad categories: Content and Instruction (Mathematics and Learning), and Surface Features (Software Features and Motivation). These combined, broad categories suggest novice teachers place roughly the same weight on pedagogical features as they do technological features. Implications for mathematics teacher educators are discussed, and suggestions for future research are provided.

Keywords: mathematics education, novice teachers, technology, virtual manipulatives

Procedia PDF Downloads 141
Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills

Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano

Abstract:

The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.

Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach

Procedia PDF Downloads 168
Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement

Authors: Goh Yung Hong, Mona Masood

Abstract:

This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.

Keywords: conventional teaching method, gamification teaching method, motivation, engagement

Procedia PDF Downloads 530
A Paradigm Shift into the Primary Teacher Education Program in Bangladesh

Authors: Happy Kumar Das, Md. Shahriar Shafiq

Abstract:

This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.

Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach

Procedia PDF Downloads 219
Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g., online entrepreneurship education courses and programs) and other digital tools (e.g., digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia PDF Downloads 271