Search results for: architectural design learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18788

Search results for: architectural design learning

13508 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 429
13507 Emerging Issues in Early Childhood Care and Development in Nigeria

Authors: Evelyn Fabian

Abstract:

The focus of this discussion centres on the emerging issues in Early Childhood Care and development in Nigeria. Early childhood care is the bedrock of Nigeria’s educational system. However, there are critical issues that had not been addressed and it is frustrating the entire educational process. Thus, this paper will show the inter-connectedness between these issues such as poor funding, trained skillful teachers that would supervise the learning process of the kids, unconducive learning environment and lack of relevant facilities. For a clear grasp of these issues, the researcher visited 36 early childhood centres distributed across the 36 spates of Nigeria. The findings which were expressed in simple percentages revealed a near total absence or government neglect of these critical areas. The findings equally showed a misplaced priority in the government allocation of funds to early child care education and development. The study concludes that this mismatch in the training of these categories of pupils, government should expedite action in addressing these emerging issues in early childhood care and development in Nigeria.

Keywords: early childhood, ECCE, education, emerging issues

Procedia PDF Downloads 542
13506 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 116
13505 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 94
13504 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 389
13503 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 83
13502 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 281
13501 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes

Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 215
13500 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn

Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew

Abstract:

The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.

Keywords: student learning, learner awareness, questionnaire development, instrument validation

Procedia PDF Downloads 434
13499 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University

Authors: Taksina Bunbut

Abstract:

Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.

Keywords: personality development, grooming, Airline Business Program, soft skill

Procedia PDF Downloads 242
13498 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 217
13497 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 226
13496 Create and Design Visual Presentation to Promote Thai Cuisine

Authors: Supaporn Wimonchailerk

Abstract:

This research aims to study how to design and create the media to promote Thai cuisine. The study used qualitative research methods by using in-depth interview 3 key informants who have experienced in the production of food or cooking shows in television programs with an aspect of acknowledging Thai foods. The results showed that visual presentation is divided into four categories. First, the light meals should be presented in details via the close-up camera with lighting to make the food look more delicious. Then the curry presentation should be arranged a clear and crisp light focus on a colorful curry paste. Besides the vision of hot steam floating from the plate and a view of curry spread on steamed rice can call great attentions. Third, delivering good appearances of the fried or spicy foods, the images must allow the audiences to see the shine of the coat covering the texture of the food and the colorful of the ingredients. Fourth, the presentation of sweets is recommended to focus on details of food design, composition, and layout.

Keywords: media production, television, promote, Thai cuisine

Procedia PDF Downloads 241
13495 Post Apartheid Language Positionality and Policy: Student Teachers' Narratives from Teaching Practicum

Authors: Thelma Mort

Abstract:

This empirical, qualitative research uses interviews of four intermediate phase English language student teachers at one university in South Africa and is an exploration of student teacher learning on their teaching practicum in their penultimate year of the initial teacher education course. The country’s post-apartheid language in education policy provides a context to this study in that children move from mother tongue language of instruction in foundation phase to English as a language of instruction in Intermediate phase. There is another layer of context informing this study which is the school context; the student teachers’ reflections are from their teaching practicum in resource constrained schools, which make up more than 75% of schools in South Africa. The findings were that in these schools, deep biases existed to local languages, that language was being used as a proxy for social class, and that conditions necessary for language acquisition were absent. The student teachers’ attitudes were in contrast to those found in the schools, namely that they had various pragmatic approaches to overcoming obstacles and that they saw language as enabling interdisciplinary work. This study describes language issues, tensions created by policy in South African schools and also supplies a regional account of learning to teach in resource constrained schools in Cape Town, where such language tensions are more inflated. The central findings in this research illuminate attitudes to language and language education in these teaching practicum schools and the complexity of learning to be a language teacher in these contexts. This study is one of the few local empirical studies regarding language teaching in the classroom and language teacher education; as such it offers some background to the country’s poor performance in both international and national literacy assessments.

Keywords: language teaching, narrative, post apartheid, South Africa, student teacher

Procedia PDF Downloads 152
13494 Research Methods and Design Strategies to Improve Resilience in Coastal and Estuary Cities

Authors: Irene Perez Lopez

Abstract:

Delta and estuary cities are spaces constantly evolving, incessantly altered by the ever-changing actions of water transformation. Strategies that incorporate comprehensive and integrated approaches to planning and design with water will play a powerful role in defining new types of flood defense. These strategies will encourage more resilient and active urban environments, allowing for new spatial and functional programs. This abstract presents the undergoing research in Newcastle, the first urbanized delta in New South Wales (Australia), and the region's second-biggest catchment and estuary. The research methodology is organized in three phases: 1) a projective cartography that analyses maps and data across the region's recorded history, identifying past and present constraints, and predicting future conditions. The cartography aids to identify worst-case scenarios, revealing the implications of land reclamation that have not considered the confronting evolution of climate change and its conflicts with inhabitation; 2) the cartographic studies identify the areas under threat and form the basis for further interdisciplinary research, complimented by community consultation, to reduce flood risk and increase urban resilience and livability; 3) a speculative or prospective phase of design with water to generate evidence-based guidelines that strengthen urban resilience of shorelines and flood prone areas.

Keywords: coastal defense, design, urban resilience, mapping

Procedia PDF Downloads 138
13493 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 102
13492 Being a Teacher in Higher Education: Techne or Praxis

Authors: Thi V. S. Nguyen, Kevin Laws

Abstract:

This study investigates the construction of higher education teachers’ roles from the perspectives of participants in a compulsory teachers’ professional development for Vietnamese higher education teachers. Constructivist grounded theory was used as methodology and analysis of the study. Fifteen program participants were semi-structured interviewed before they started the professional development program for higher education teachers. Five trainers of the program were interviewed and documents related to teachers’ standards in Vietnam were analysed to supplement participants’ perspectives. Standards and roles of higher education teachers emerged as two categories grounded from data. Standard category involves moral and professional criteria, whereas roles of higher education teachers category consists of specific roles related to guiding student learning, and advising their academic, moral and social activities. A model of higher education teachers’ conceptions of their roles in a Vietnamese context addressing both professional (techne) and moral (praxis) responsibilities is constructed from this study. A discussion on teachers’ roles in higher education is put forward and insightful implications for the design and possible restructure of teachers’ professional development for early career higher education teachers is suggested.

Keywords: higher education teachers' roles and standards, moral roles, teachers' professional development, teachers' conceptions of their roles

Procedia PDF Downloads 403
13491 The Experimental Study of Cold-Formed Steel Truss Connections Capacity: Screw and Adhesive Connection

Authors: Indra Komara, Kıvanç Taşkin, Endah Wahyuni, Priyo Suprobo

Abstract:

A series of connection tests that were composed of Cold-Formed Steel (CFS) sections were made to investigate the capacity of connections in a roof truss frame. The connection is controlled by using the two-different type of connection i.e. screws connection and adhesive. The variation of screws is also added applying 1 screw, 2 screws, and 3 screws. On the other hand, the percentage of adhesively material is increased by the total area of screws connection which is 50%, 75%, and 100%. Behaviors illustrated by each connection are examined, and the design capacities projected from the current CFS design codes are appealed to the experimental results of the connections. This research analyses the principal factors assisting in the ductile response of the CFS truss frame connection measured to propose recommendations for connection design, and novelty so that the connection respond plastically with a significant capacity for no brittle failure. Furthermore, the comparison connection was considered for the analysis of the connection capacity, which was estimated from the specimen’s maximum load capacity and the load-deformation behavior.

Keywords: adhesive, bolts, capacity, cold-formed steel, connections, truss

Procedia PDF Downloads 298
13490 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 129
13489 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 437
13488 A Case Study on Blended Pedagogical Approach by Leveraging on Digital Marketing Concepts towards Inculcating Concepts of Sustainability in Management Education

Authors: Narendra Babu Bommenahalli Veerabhadrappa

Abstract:

Teaching sustainability concepts along with profit maximizing philosophy of business in management education is a challenge. This paper explores and evaluates various learning models to inculcate sustainability concepts in management education. The paper explains about a new pedagogy that was tested in a business management school (Indus Business Academy, Bangalore, India) to teach sustainability. The pedagogy was designed by intertwining concepts related to sustainability with digital marketing concepts. As part of this experimental method, students (in groups) were assigned with various topics of sustainability and were asked to work with concepts of digital marketing and thus market the concepts of sustainability. The paper explains as a case study as to how sustainability was integrated with digital marketing tools and how learning towards sustainability was facilitated. It also explains the outcomes of this pedagogical method, in terms of inculcating sustainability concepts amongst management students as well as marketing and proliferation of sustainability concepts to bring about the behavioral changes amongst target audience towards sustainability.

Keywords: management-education, pedagogy, sustainability, behavior

Procedia PDF Downloads 249
13487 Psychological Variables Predicting Academic Achievement in Argentinian Students: Scales Development and Recent Findings

Authors: Fernandez liporace, Mercedes Uriel Fabiana

Abstract:

Academic achievement in high school and college students is currently a matter of concern. National and international assessments show high schoolers as low achievers, and local statistics indicate alarming dropout percentages in this educational level. Even so, 80% of those students intend attending higher education. On the other hand, applications to Public National Universities are free and non-selective by examination procedures. Though initial registrations are massive (307.894 students), only 50% of freshmen pass their first year classes, and 23% achieves a degree. Low performances use to be a common problem. Hence, freshmen adaptation, their adjustment, dropout and low academic achievement arise as topics of agenda. Besides, the hinge between high school and college must be examined in depth, in order to get an integrated and successful path from one educational stratum to the other. Psychology aims at developing two main research lines to analyse the situation. One regarding psychometric scales, designing and/or adapting tests, examining their technical properties and their theoretical validity (e.g., academic motivation, learning strategies, learning styles, coping, perceived social support, parenting styles and parental consistency, paradoxical personality as correlated to creative skills, psychopathological symptomatology). The second research line emphasizes relationships within the variables measured by the former scales, facing the formulation and testing of predictive models of academic achievement, establishing differences by sex, age, educational level (high school vs college), and career. Pursuing these goals, several studies were carried out in recent years, reporting findings and producing assessment technology useful to detect students academically at risk as well as good achievers. Multiple samples were analysed totalizing more than 3500 participants (2500 from college and 1000 from high school), including descriptive, correlational, group differences and explicative designs. A brief on the most relevant results is presented. Providing information to design specific interventions according to every learner’s features and his/her educational environment comes up as a mid-term accomplishment. Furthermore, that information might be helpful to adapt curricula by career, as well as for implementing special didactic strategies differentiated by sex and personal characteristics.

Keywords: academic achievement, higher education, high school, psychological assessment

Procedia PDF Downloads 372
13486 Significance of Personnel Recruitment in Implementation of Computer Aided Design Curriculum of Architecture Schools

Authors: Kelechi E. Ezeji

Abstract:

The inclusion of relevant content in curricula of architecture schools is vital for attainment of Computer Aided Design (CAD) proficiency by graduates. Implementing this content involves, among other variables, the presence of competent tutors. Consequently, this study sought to investigate the importance of personnel recruitment for inclusion of content vital to the implementation of CAD in the curriculum for architecture education. This was with a view to developing a framework for appropriate implementation of CAD curriculum. It was focused on departments of architecture in universities in south-east Nigeria which have been accredited by National Universities Commission. Survey research design was employed. Data were obtained from sources within the study area using questionnaires, personal interviews, physical observation/enumeration and examination of institutional documents. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved random sampling by balloting of the departments. The second stage involved obtaining respondents’ population from the number of staff and students of sample population. Chi Square analysis tool for nominal variables and Pearson’s product moment correlation test for interval variables were used for data analysis. With ρ < 0.5, the study found significant correlation between the number of CAD literate academic staff and use of CAD in design studio/assignments; that increase in the overall number of teaching staff significantly affected total CAD credit units in the curriculum of the department. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur, CAD-literacy should be a factor in the recruitment of staff and a policy of in-house training should be pursued.

Keywords: computer-aided design, education, personnel recruitment, curriculum

Procedia PDF Downloads 214
13485 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 30
13484 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 160
13483 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 152
13482 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 176
13481 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 145
13480 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 375
13479 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 136