Search results for: optimal condition
1747 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks
Authors: Ahmed Abdullah Ahmed
Abstract:
The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments
Procedia PDF Downloads 5121746 Illness Experience Without Illness: A Qualitative Study on the Lived Experience of Young Adults During the COVID-19 Pandemic
Authors: Gemma Postil, Claire Zanin, Michael Halpin, Caroline Ritter
Abstract:
Illness experience research typically focuses on people that are living with a medical condition; however, the broad consequences of the COVID-19 pandemic are impacting those without the virus itself, as many experienced extensive lockdowns, social isolation, and distress. Drawing on conceptual work in the illness experience literature, we argue that policy and social changes tied to COVID-19 produce biographical disruptions. In this sense, we argue that the COVID-19 pandemic produces illness experience without illness, as the pandemic comprehensively impacts health and biography. This paper draws on 30 in-depth interviews with young adults living in Prince Edward Island (PEI), which were conducted as part of a larger project to understand how young adults navigate compliance with the COVID-19 pandemic. We then inductively analyzed the interviews with a constructivist grounded theory approach. Specifically, we demonstrate that young adults living in PEI during the COVID-19 pandemic experienced biographical disruptions throughout the pandemic despite not contracting the virus. First, we detail how some participants experience biographical acceleration, with the pandemic accelerating relationships, home buying, and career planning. Second, we demonstrate biographical stagnation, wherein participants report being unable to pursue major life milestones. Lastly, we describe biographical regression, wherein participants feel they are losing ground during the pandemic and are actively falling behind their peers. These findings provide the novel application of illness experience concepts to the context of the COVID-19 pandemic, contribute to work on illness experience and ambiguity, and extend Bury’s conceptualization of biographical disruption. In conclusion, we demonstrate that young adults experienced the biographical disruption expected from having COVID-19 without having an illness, highlighting the depth to which the pandemic affected young adults.Keywords: illness experience, lived experience, biographical disruption, COVID-19, young adults
Procedia PDF Downloads 1611745 Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation
Authors: Yujie Zhou, Hee-Seong Byun, Sang-In Bak, Eui-Joon Kil, Kyung Joo Min, Vivek Chavan, Won Kyong Cho, Sukchan Lee, Seung-Woo Hong, Tae-Sun Park
Abstract:
Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research.Keywords: tomato (solanum lycopersicum), fast neutron irradiation, RNA-sequence, transcriptome expression
Procedia PDF Downloads 3191744 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load
Authors: Morteza Raminnia
Abstract:
In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers
Procedia PDF Downloads 4191743 Derivation of a Risk-Based Level of Service Index for Surface Street Network Using Reliability Analysis
Authors: Chang-Jen Lan
Abstract:
Current Level of Service (LOS) index adopted in Highway Capacity Manual (HCM) for signalized intersections on surface streets is based on the intersection average delay. The delay thresholds for defining LOS grades are subjective and is unrelated to critical traffic condition. For example, an intersection delay of 80 sec per vehicle for failing LOS grade F does not necessarily correspond to the intersection capacity. Also, a specific measure of average delay may result from delay minimization, delay equality, or other meaningful optimization criteria. To that end, a reliability version of the intersection critical degree of saturation (v/c) as the LOS index is introduced. Traditionally, the level of saturation at a signalized intersection is defined as the ratio of critical volume sum (per lane) to the average saturation flow (per lane) during all available effective green time within a cycle. The critical sum is the sum of the maximal conflicting movement-pair volumes in northbound-southbound and eastbound/westbound right of ways. In this study, both movement volume and saturation flow are assumed log-normal distributions. Because, when the conditions of central limit theorem obtain, multiplication of the independent, positive random variables tends to result in a log-normal distributed outcome in the limit, the critical degree of saturation is expected to be a log-normal distribution as well. Derivation of the risk index predictive limits is complex due to the maximum and absolute value operators, as well as the ratio of random variables. A fairly accurate functional form for the predictive limit at a user-specified significant level is yielded. The predictive limit is then compared with the designated LOS thresholds for the intersection critical degree of saturation (denoted as XKeywords: reliability analysis, level of service, intersection critical degree of saturation, risk based index
Procedia PDF Downloads 1311742 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach
Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong
Abstract:
Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach
Procedia PDF Downloads 3961741 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties
Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda
Abstract:
This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties
Procedia PDF Downloads 661740 Performance of an Automotive Engine Running on Gasoline-Condensate Blends
Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis
Abstract:
Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends
Procedia PDF Downloads 2511739 Religion and Democracy: Assessing Tolerance in the Diversity of Indonesia
Authors: Harsi Nastiti, Haidar Fikri
Abstract:
Indonesia has been known for its diversity of cultures, ethnics, religions, and races. This diversity signs as the uniqueness of the country, so tolerance becomes vital point here. As a unitary state, tolerance value is established strongly as the foundation of democracy implementation but recently this tolerance condition facing up some problems after regional election. In this case, religion issue takes a main role for the Indonesian political system which is managed into tolerance breaker especially for local democracy. The election of Jakarta’s Governor 2017 can be said as the momentum for the people to rethink the democracy and tolerance meaning. It begins from one of the governor candidates who makes statement about the majority religion and unfortunately the candidate comes from the minority. The statement emerges into a new social movement based on religiosity. Basically, the social movement which is coordinated by Islamic Defender Front (Front Pembela Islam or FPI) and National Movement to Safeguard the Fatwa-Indonesian Ulama Council (GNPF-MUI) want to demand the justice in the name of blasphemy. The action continuously happens in different names (Action 411, 212, etc.). So, this article analyzes the new phenomenon and how does the impact for the tolerance and democracy life in Indonesia. The method is using qualitative method by review of literature and media content analysis. Results show this phenomenon potentially spreading new conflicts far beyond the goal of the action itself; justice. It makes the conflicts more complex after there are actions such as; Parade Kebhinekaan and Aksi Lilin which contrary reacts to the actions before. These actions and reactions rise up the sensitive issues for Indonesia like religions, Pancasila, unity in diversity, ethnics, and races. At the same time raising skepticism; will it be over after the candidate is getting sentenced or becomes the dangerous latent conflict that will threaten tolerance and democracy in Indonesia.Keywords: conflict, democracy, religion, tolerance
Procedia PDF Downloads 2911738 Sleep Health Management in Residential Aged Care Facilities
Authors: Elissar Mansour, Emily Chen, Tracee Fernandez, Mariam Basheti, Christopher Gordon, Bandana Saini
Abstract:
Sleep is an essential process for the maintenance of several neurobiological processes such as memory consolidation, mood, and metabolic processes. It is known that sleep patterns vary with age and is affected by multiple factors. While non-pharmacological strategies are generally considered first-line, sedatives are excessively used in the older population. This study aimed to explore the management of sleep in residential aged care facilities (RACFs) by nurse professionals and to identify the key factors that impact provision of optimal sleep health care. An inductive thematic qualitative research method was employed to analyse the data collected from semi-structured interviews with registered nurses working in RACF. Seventeen interviews were conducted, and the data yielded three themes: 1) the nurses’ observations and knowledge of sleep health, 2) the strategies employed in RACF for the management of sleep disturbances, 3) the organizational barriers to evidence-based sleep health management. Nurse participants reported the use of both non-pharmacological and pharmacological interventions. Sedatives were commonly prescribed due to their fast action and accessibility despite the guidelines indicating their use in later stages. Although benzodiazepines are known for their many side effects, such as drowsiness and oversedation, temazepam was the most commonly administered drug. Sleep in RACF was affected by several factors such as aging and comorbidities (e.g., dementia, pain, anxiety). However, the were also many modifiable factors that negatively impacted sleep management in RACF. These include staffing ratios, nursing duties, medication side effects, and lack of training and involvement of allied health professionals. This study highlighted the importance of involving a multidisciplinary team and the urge to develop guidelines and training programs for healthcare professionals to improve sleep health management in RACF.Keywords: registered nurses, residential aged care facilities, sedative use, sleep
Procedia PDF Downloads 1061737 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum
Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza
Abstract:
Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin
Procedia PDF Downloads 1081736 Passenger Movement Pattern during Ship Evacuation Considering the Combined Effect of Ship Heeling and Trim
Authors: Jinlu Sun, Shouxiang Lu, Siuming Lo
Abstract:
Large passenger ship, especially luxury cruise, is one of the most prevalent means of marine transportation and tourism nowadays. In case of an accident, an effective evacuation would be the ultimate way to minimize the consequence. Ship heeling and trim has a considerable influence on passenger walking speed and posture during ship evacuation. To investigate passenger movement pattern under the combined effect of ship heeling and trim, a ship corridor simulator was developed. Both fast and freely individual walking experiments by male and female experimental subjects under heeling and trim conditions were conducted and recorded therein. It is found that routes of experimental subjects would change due to the heeling and trim angles, although they always walk along the right side because of cultural factors. Experimental subjects would also change their posture to adapt the combined heeling and trim conditions, such as leaning forward, adopting larger arm swaying, shorter and more frequent steps. While for individual walking speed, the speed would decrease with the increasing heeling and trim angles. But the maximum individual walking speed is achieved at heeling angle of 0° with trim angle ranging from -15° to -5 °, instead of on level ground, which may be attributable to the effect of the gravitational acceleration. Female is approximately 10% slower than male due to the discrepancy in physical quality. Besides, individual walking speed shows similar trends in both fast and freely walking modes, and the speed value in freely walking mode is about 78% of that in fast walking mode under each experimental condition. Furthermore, to designate the movement pattern of passengers in heeling and trim conditions, a model of the walking speed reduction was proposed. This work would provide guidance on the development of evacuation models and the design of evacuation facilities on board.Keywords: evacuation, heeling, individual walking speed, ship corridor simulator, trim
Procedia PDF Downloads 2571735 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1421734 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms
Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra
Abstract:
Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms
Procedia PDF Downloads 4271733 Comparisonal Study of Succinylation and Glutarylation of Jute Fiber: Study of Mechanical Properties of Modified Fiber Reinforced Epoxy Composites
Authors: R. Vimal, K. Hari Hara Subramaniyan, C. Aswin, B. Logeshwaran, M. Ramesh
Abstract:
Due to several environmental concerns, natural fibers have greatly replaced the synthetic fibers as a reinforcing material in polymer matrix composites. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. In recent years, modification of plant fibers with range of chemicals to increase various mechanical and thermal properties has been focused greatly. Among that, some of the plant fibers were modified using succinic anhydride. In the present study, Jute fibers have been modified chemically by treatment with succinic anhydride and glutaric anhydride at different concentrations of 5%, 10%, 20%, 30% and 40%. The fiber modification was done under retting condition at various retention times of 3, 6, 12, 24, 36, and 48 hours. The modification of fiber structure in both the cases is confirmed with Infrared Spectroscopy. The degree of modification increases with increase in retention time, but higher retention time has damaged the fiber structure which is common in both the cases. Comparatively, treatment of fibers with glutaric anhydride has shown efficient output than that of succinic anhydride. The unmodified fibers, succinylated fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix at various volume fractions of fiber under room temperature. The composite made using unmodified fiber is used as a standard material. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of succinylated and unmodified fiber.Keywords: flexural strength, glutarylation, jute fibers, succinylation, tensile strength
Procedia PDF Downloads 5081732 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5
Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain
Abstract:
The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.Keywords: chromium, hexose, ionic liquid, , zeolite
Procedia PDF Downloads 1761731 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions
Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski
Abstract:
The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.Keywords: waste heat recovery, heat exchanger, CFD simulation, pems
Procedia PDF Downloads 5741730 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)
Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,
Abstract:
Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism
Procedia PDF Downloads 1831729 Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest
Authors: Prem Bahadur Giri
Abstract:
The nationalization of forests during the early 1960s had become counterproductive for the conservation of forests in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from a government-controlled forestry system to people’s direct participation in managing forestry, conceptualizing a community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests to enhance the forest condition on the one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest-dependent communities, as well as promoting community ownership of a forest. As a result, the establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which are around 45 percent of the forest area. Of the total forest area, 1.8 million hectares have been handed over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest. To streamline the governance of community forests, the enactment of ‘The Forest Act 1993’ provides a clear legal basis for managing community forests in Nepal. This article is based on an in-depth study taking the case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses the extent to which the TCF is able to achieve the twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of the forest. The primary information was generated through in-depth interviews along with group discussions with members, the management committee, and other relevant stakeholders. The findings reveal that there is a significant improvement in the regeneration of the forest and also changes in the socio-economic status of the local community. However, coordination with local municipalities and forest governing entities is still weak.Keywords: community forest, socio-economic benefit, sustainable forest management, Nepal
Procedia PDF Downloads 951728 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model
Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin
Abstract:
The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model
Procedia PDF Downloads 4671727 Disaster Recovery and Tourism Development: The Case of Diving Industry in Coron Island Palawan
Authors: Kimberly Joyce A. Roguis, Mica Lorraine L. Fernando, Alan Vito B. Macadangdang, Jennina Mari C. Mijares, Maria Carinnes A. Gonzalez
Abstract:
The paper showcases the vulnerability of the tourism industry especially the inevitable occurrence of natural disasters, implicating the necessity for post-disaster analysis on tourist attractions. This study discusses the aftermath of the super typhoon ‘Yolanda’ incident in the locality of Coron Island, Palawan, assessing its general effect on the community and its tourism livelihood through the analysis of responses from key role-players in the tourism industry of the area gathered through semi-structured interviews and direct observation. The local government’s instigation of recovery programs to their locality has been a pivotal factor in reviving the vitality of their tourism industry and the involvement of the community has been the determining condition that shifted the industry towards revival a year after the incidence. The study illuminates the disaster mitigation processes in the local tourism livelihood perspective, predominantly the diving industry. It did not suffer physical damage to a great extent but was affected because of the public imagery the disaster brought upon. Collaboration between the local government and the community is the highlight of the research for they maneuvered recovery revealing that cooperation between these two parties bridged the correlation of recovery to tourism development. The disaster paved way to a stance towards promoting progressive tourism outlooks, raising awareness among the public and private sectors and re-assessment of the tourism vitality in their locality. The mayhem and destruction proved to be a liberating creative process to give way to progression and was deemed to be of high significance in the over-all tourism system process despite its impediments in the case of the tourism industry in Coron, Palawan.Keywords: disaster recovery, tourism development, diving, Palawan
Procedia PDF Downloads 3721726 Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan
Authors: Keisuke Konishi, Yoshinari Hiroshiro, Kento Terashima, Atsushi Tsutsumi
Abstract:
Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50×107 m3/year from the river and 1.04×107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication.Keywords: Eutrophication, groundwater recharge model, nutrient inflow, quasi three-dimensional two-phase groundwater flow model, submarine groundwater discharge
Procedia PDF Downloads 4551725 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran
Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz
Abstract:
Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.Keywords: urban integrity, social sustainability, collective memory, social decay
Procedia PDF Downloads 2881724 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices
Authors: P. Caimmi, E. Bele, A. Abolfathi
Abstract:
Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis
Procedia PDF Downloads 1221723 Systolic Blood Pressure and Its Determinants: Study in a Population Attending Pharmacies in a Portuguese Coastal City
Authors: M. J. Reis Lima, J. Oliveira, M. Brito, C. Lemos, A. Mascarenhas, E. Teixeira Lemos
Abstract:
Hypertension is a common condition causing cardio and cerebrovascular complications. Portugal has one of the highest mortality rates from stroke and a high prevalence of hypertension. Systolic blood pressure (SBP) is an important risk factor for cardiovascular events (myocardial infarction and stroke) and premature mortality, particularly in the elderly population. The present study aims to estimate the prevalence of hypertension in a Portuguese population living in a coastal city and to identify some of its determinants (namely gender, age, the body mass index and physical activity frequency). A total of 91 adults who attended three pharmacies of a coastal city in the center of Portugal, between May and August of 2013 were evaluated. Attendants who reported to have diabetes or taking antihypertensive drugs in the 2 previous weeks were excluded from the study. Sociodemographic factors, BMI, habits of exercise and BP were assessed. Hypertension was defined as blood pressure ≥140/90 mmHg. The majority of the studied population was constituted by women (75.8%), with a mean age of 54.2±1.6 years old, married or living in civil union and that had completed secondary school or had higher education (40%). They presented a mean BMI of 26.2±4.76 Kg/m2. and were sedentary. The mean BP was 127.0±17.77mmHg- 74.69 ± 9.53. In this population, we found 4.3% of people with hypertension and 16.1% with normal high blood pressure. Men exhibit a tendency to present higher systolic blood pressure values than women. Of all the factors considered, SBP values also tended to be higher with age and higher BMI values. Despite the fact that the mean values of SBP did not present values higher than 140 mmHg we must be concerned because the studied population is undiagnosed for hypertension. Our study even with some limitations might be a prelude to the upcoming research about the underlying factors responsible for the occurrence of SBP.Keywords: hypertension, age, exercise, obesity and gender
Procedia PDF Downloads 5441722 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt
Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah
Abstract:
With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA
Procedia PDF Downloads 4101721 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors
Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis
Abstract:
In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method
Procedia PDF Downloads 1351720 Scheduling Building Projects: The Chronographical Modeling Concept
Authors: Adel Francis
Abstract:
Most of scheduling methods and software apply the critical path logic. This logic schedule activities, apply constraints between these activities and try to optimize and level the allocated resources. The extensive use of this logic produces a complex an erroneous network hard to present, follow and update. Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic, and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. The objective of the space planning is to link the spatial and temporal aspects, promote efficient use of the site, define optimal site occupancy rates, and ensures suitable rotation of the workforce in the different spaces. The Chronographic scheduling modelling belongs to this category and models construction operations as well as their processes, logical constraints, association and organizational models, which help to better illustrate the schedule information using multiple flexible approaches. The model defined three categories of areas (punctual, surface and linear) and four different layers (space creation, systems, closing off space, finishing, and reduction of space). The Chronographical modelling is a more complete communication method, having the ability to alternate from one visual approach to another by manipulation of graphics via a set of parameters and their associated values. Each individual approach can help to schedule a certain project type or specialty. Visual communication can also be improved through layering, sheeting, juxtaposition, alterations, and permutations, allowing for groupings, hierarchies, and classification of project information. In this way, graphic representation becomes a living, transformable image, showing valuable information in a clear and comprehensible manner, simplifying the site management while simultaneously utilizing the visual space as efficiently as possible.Keywords: building projects, chronographic modelling, CPM, critical path, precedence diagram, scheduling
Procedia PDF Downloads 1551719 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India
Authors: Kirti Tewari, Rahul Dev
Abstract:
Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters
Procedia PDF Downloads 3371718 Effect of Bactocellon White Leg Shrimp (Litopenaeusvannamei) Growth Performance and the Shrimp Survival to Vibrio paraheamolyticus
Authors: M. Soltani, K. Pakzad, A. Haghigh-Khiyabani, M. Alavi, R. Naderi, M. Castex
Abstract:
Effect of probiotic Bactocell (Pediococcus acidilactici) as a supplementary diet was studied on post-larvae 12-15 of white leg shrimp (Litopenaeus vannamei) (150000 PL/0.5 h pond, average body weight=0.02 g) growth performance under farm condition for 102 days at water quality parameters consisting of temperature at 30.5-36οC, dissolved oxygen 4.1-6.6 mg/l, salinity 40-54 g/l, turbidity 35-110 cm, ammonia 0.1-0.8 mg/l and nitrite 0.1-0.9 mg/l. Also, the resistance level of the treated shrimps was assessed against a virulent strain of Vibrio paraheamolyticus as intramuscular injection route at 1.4 x 106 cells/shrimp. Significantly higher growth rate (11.3±1.54 g) and lower feed conversion ratio (1.1) were obtained in shrimps fed diets supplemented with Bactocell at 350 g/ tone feed compared to other treatments of 250 g Bactocell/ton feed (10.8±2 g, 1.3), 500 g Bactocell/ton feed (10.3±1.7 g, 1.3) and untreated control (10.1±2 g, 1.4). Also, thermal growth coefficient (0.057%) and protein efficiency ratio (2.13) were significantly improved in shrimps fed diets supplemented with Bactocell at 350 g/ton feed compare to other groups. Shrimps fed diet supplemented with Bactocell at 350 g/tone feed showed significantly higher protein content (72.56%) in their carcass composition than treatments of 250 g/ton feed (65.9%), 500 g/ton feed (67.5%) and control group (65.9%), while the carcass contents of moisture, lipid and ash in all shrimp groups were not significantly affected by different concentrations of Bactocell. No mortality occurred in the experimentally infected shrimps fed with Bactocell at 500 g/tone feed after 7 hours post-challenge with V. parahemolyticus. The mortality levels of 100%, 40%, 50% and 70% were obtained in shrimps fed with 0.0, 500 g/tone feed, 350 g/ton feed and 250 g/ton feed, respectively 14 hours post-infection. Also, the cumulative mortalities were achieved in 100%, 92% and 81% in shrimps few with Bactocell at 500 g/ton feed, 250 g/ton feed and 350 g/ton feed, respectively.Keywords: litopenaeus vannamei, vibrio paraheamolyticus, pediococcus acidilactici, growth performance, bactocell
Procedia PDF Downloads 677