Search results for: positional electric drive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2157

Search results for: positional electric drive

1677 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 230
1676 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 158
1675 Scenario-Based Analysis of Electric Vehicle Penetration in Road Transportation in Laos

Authors: Bouneua Khamphilavanh, Toshihiko Masui

Abstract:

The penetration of EV (electric vehicle) technology in Lao road transportation, in this study, was analyzed by using the AIM/CGE [Laos] model. The computable general equilibrium (CGE) model was developed by the Asia-Pacific Integrated Model (AIM) team. In line with the increase of the number of road vehicles, the energy demand in the transport sector has been gradually increased which resulted in a large amount of budget spent for importing fossil fuels during the last decade, and a high carbon dioxide emission from the transport sector, hence the aim of this research is to analyze the impact of EVs penetration on economic and CO₂ emission in short-term, middle-term, and long-term. By the year 2050, the expected gross domestic product (GDP) value, due to Laos will spend more budget for importing the EV, will be gradually lost up to one percent. The cumulative CO₂ emission from 2020 to 2050 in BAU case will be 12,000 GgCO₂eq, and those in the EV mitigation case will be 9,300 GgCO₂eq, which accounting for likely 77% cumulative CO₂ emission reduction in the road transport sector by introducing the EV technology.

Keywords: GDP, CO₂ mitigation, CGE model, EV technology, transport

Procedia PDF Downloads 278
1674 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants

Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic

Abstract:

Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.

Keywords: thermal energy storage, combined heat and power, heat pumps, electrification

Procedia PDF Downloads 89
1673 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 288
1672 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs

Procedia PDF Downloads 83
1671 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago

Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu

Abstract:

Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.

Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago

Procedia PDF Downloads 52
1670 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 154
1669 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses

Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar

Abstract:

To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.

Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G

Procedia PDF Downloads 543
1668 The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case

Authors: Henry Gonzalo Acurio Flores, Alvaro Nicolas Corral Naveda, Juan Francisco Fonseca Palacios

Abstract:

In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility. 1) A Business as Usual BAU scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies at the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP) and can encompass a greater vision to develop holistic, sustainable transport systems at local governments.

Keywords: electro mobility, energy, policy, sustainable transportation

Procedia PDF Downloads 85
1667 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.

Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit

Procedia PDF Downloads 72
1666 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 679
1665 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 256
1664 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: finite element method, flux density, transformer, voltage gradient

Procedia PDF Downloads 292
1663 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs

Authors: S. Lertsakulpasuk, S. Athichanagorn

Abstract:

As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.

Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs

Procedia PDF Downloads 445
1662 Study on Measuring Method and Experiment of Arc Fault Detection Device

Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li

Abstract:

Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.

Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault

Procedia PDF Downloads 510
1661 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers

Authors: Ismail Kurt, Necibe Fusun Oyman Serteller

Abstract:

Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.

Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.

Procedia PDF Downloads 12
1660 Theory of Gyrotron Amplifier in a Vane-Loaded Waveguide with Inner Dielectric Material

Authors: Reyhaneh Hashemi, Shahrooz Saviz

Abstract:

In his study, we have survey the theory of gyrotron amplifier in a vane-loaded waveguide with inner dielectric material. Dispersion relation for electromagnetic waves emitted by a cylindrical waveguide that provided with wedge-shaped metal vanes projecting radially inward from the wall of the guide and exited in the transverse-electric mode was analysed. From numerical analysis of this dispersion relation, it is shown that the stability behavior of the fast-wave mode is dependent of the dielectric constant. With a small axial momentum spreed, a super bandwidth is shown to be attainable by a mixed mode operation. Also, with the utilization from the numeric analysis of relation dispersion. We show that in the –speed mode, the constant is independent de-electric. With the ratio of dispersion of smell, high –bandwith was obtained for the combined mode. And at the end, we were comparing the result of our work (vane-loaded) by the waveguide with a smooth wall.

Keywords: gyrotron amplifier, waveguide, vane-loaded waveguide, dielectric material, dispersion relation, cylindrical waveguide, fast-wave mode, mixed mode operation

Procedia PDF Downloads 103
1659 Auricular Electroacupuncture Rescued Epilepsy Seizure by Attenuating TLR-2 Inflammatory Pathway in the Kainic Acid-Induced Rats

Authors: I-Han Hsiao, Chun-Ping Huang, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Epilepsy is chronic brain disorder that results in the sporadic occurrence of spontaneous seizures in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or little benefits in the small amount of patients and usually initiate severe side effects. This inflammation contributes to enhanced neuronal excitability and the onset of epilepsy. Auricular electric-stimulation (AES) can increase parasympathetic activity and stimulate the solitary tract nucleus to induce the cholinergic anti-inflammatory pathway. Furthermore, it may be a therapeutic strategy for the treatment of epilepsy. In the present study, we want to investigate the effects of AES on inflammatory mediators in kainic acid (KA)-induced epileptic seizure rats. Experimental KA injection increased expression of TLR-2 pathway associated inflammatory mediators, were further reduced by either 2Hz or 15 Hz AES in the prefrontal cortex, hippocampus, and somatosensory cortex. We suggest that AES can successfully control the epileptic seizure by down-regulation of inflammation signaling pathway.

Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation

Procedia PDF Downloads 185
1658 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 473
1657 Semantic Network Analysis of the Saudi Women Driving Decree

Authors: Dania Aljouhi

Abstract:

September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.

Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing

Procedia PDF Downloads 159
1656 Frequency of Refractive Errors in Squinting Eyes of Children from 4 to 16 Years Presenting at Tertiary Care Hospital

Authors: Maryum Nawaz

Abstract:

Purpose: To determine the frequency of refractive errors in squinting eyes of children from 4 to 16 years presenting at tertiary care hospital. Study Design: A descriptive cross-sectional study was done. Place and Duration: The study was conducted in Pediatric Ophthalmology, Hayatabad Medical Complex, Peshawar. Materials and Methods: The sample size was 146 keeping 41.45%5 proportion of refractive errors in children with squinting eyes, 95% confidence interval and 8% margin of error under WHO sample size calculations. Non-probability consecutive sampling was done. Result: Mean age was 8.57±2.66 years. Male were 89 (61.0%) and female were 57 (39.0%). Refractive error was present in 56 (38.4%) and was not present in 90 (61.6%) of patients. There was no association of gender, age, parent refractive errors, or early usage of electric equipment with the refractive errors. Conclusion: There is a high prevalence of refractive errors in a patient with strabismus. There is no association of age, gender, parent refractive errors, or early usage of electric equipment in the occurrence of refractive errors. Further studies are recommended for confirmation of these.

Keywords: strabismus, refractive error, myopia, hypermetropia, astigmatism

Procedia PDF Downloads 145
1655 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 324
1654 Modeling Curriculum for High School Students to Learn about Electric Circuits

Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai

Abstract:

Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.

Keywords: electric circuits, modeling curriculum, science learning, scientific model

Procedia PDF Downloads 460
1653 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials

Authors: Sunita Kumawat, Sumit Kumar Vishwakarma

Abstract:

The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.

Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection

Procedia PDF Downloads 109
1652 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 244
1651 How Whatsappization of the Chatbot Affects User Satisfaction, Trust, and Acceptance in a Drive-Sharing Task

Authors: Nirit Gavish, Rotem Halutz, Liad Neta

Abstract:

Nowadays, chatbots are gaining more and more attention due to the advent of large language models. One of the important considerations in chatbot design is how to create an interface to achieve high user satisfaction, trust, and acceptance. Since WhatsApp conversations sometimes substitute for face-to-face communication, we studied whether WhatsAppization of the chatbot -making the conversation resemble a WhatsApp conversation more- will improve user satisfaction, trust, and acceptance, or whether the opposite will occur due to the Uncanny Valley (UV) effect. The task was a drive-sharing task, in which participants communicated with a textual chatbot via WhatsApp and could decide whether to participate in a ride to college with a driver suggested by the chatbot. WhatsAppization of the chatbot was done in two ways: By a dialog-style conversation (Dialog versus No Dialog), and by adding WhatsApp indicators – “Last Seen”, “Connected”, “Read Receipts”, and “Typing…” (Indicators versus No Indicators). Our 120 participants were randomly assigned to one of the four 2 by 2 design groups, with 30 participants in each. They interacted with the WhatsApp chatbot and then filled out a questionnaire. The results demonstrated that, as expected from the manipulation, the interaction with the chatbot was longer for the dialog condition compared to the no dialog. This extra interaction, however, did not lead to higher acceptance -quite the opposite, since participants in the dialog condition were less willing to implement the decision made at the end of the conversation with the chatbot and continue the interaction with the driver they chose. The results are even more striking when considering the Indicators condition. Both for the satisfaction measures and the trust measures, participants’ ratings were lower in the Indicators condition compared to the No Indicators. Participants in the Indicators condition felt that the ride search process was harder to operate, and slower (even though the actual interaction time was similar). They were less convinced that the chatbot suggested real trips and they trusted the person offering the ride and referred to them by the chatbot less. These effects were more evident for participants who preferred to share their rides using WhatsApp compared to participants who preferred chatbots for that purpose. Considering our findings, we can say that the WhatsAppization of the chatbot was detrimental. This is true for the both chatbot WhatsAppization methods – by making the conversation more a dialog and adding WhatsApp indicators. For the chosen drive-sharing task, the results were, in addition to lower satisfaction, less trust in the chatbot’s suggestion and even in the driver suggested by the chatbot, and lower willingness to actually undertake the suggested ride. In addition, it seems that the most problematic WhatsAppization method was using WhatsApp’s indicators during the interaction with the chatbot. The current study suggests that a conversation with an artificial agent should also not imitate a WhatsApp conversation very closely. With the proliferation of WhatsApp use, the emotional and social aspect of face-to face commination are moving to WhatsApp communication. Based on the current study’s findings, it is possible that the UV effect also occurs in WhatsAppization, and not only in humanization, of the chatbot, with a similar feeling of eeriness, and is more pronounced for people who prefer to use WhatsApp over chatbots. The current research can serve as a starting point to study the very interesting and important topic of chatbots WhatsAppization. More methods of WhatsAppization and other tasks could be the focus of further studies.

Keywords: chatbot, WhatsApp, humanization, Uncanny Valley, drive sharing

Procedia PDF Downloads 49
1650 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors

Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira

Abstract:

The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.

Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance

Procedia PDF Downloads 351
1649 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow

Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho

Abstract:

This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.

Keywords: swirling flow, heat transfer, electrohydrodynamic, numerical analysis

Procedia PDF Downloads 292
1648 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 476