Search results for: magnesium cored wire
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 659

Search results for: magnesium cored wire

179 Effect of Depth on the Distribution of Zooplankton in Wushishi Lake Minna, Niger State, Nigeria

Authors: Adamu Zubairu Mohammed, Fransis Oforum Arimoro, Salihu Maikudi Ibrahim, Y. I. Auta, T. I. Arowosegbe, Y. Abdullahi

Abstract:

The present study was conducted to evaluate the effect of depth on the distribution of zooplankton and some physicochemical parameters in Tungan Kawo Lake (Wushishi dam). Water and zooplankton samples were collected from the surface, 3.0 meters deep and 6.0 meters deep, for a period of 24 hours for six months. Standard procedures were adopted for the determination of physicochemical parameters. Results have shown significant differences in the pH, DO, BOD Hardness, Na, and Mg. A total of 1764 zooplankton were recorded, comprising 35 species, with cladocera having 18 species (58%), 14 species of copepoda (41%), 3 species of diptera (1.0%). Results show that more of the zooplankton were recorded in the 3.0 meters-deep region compared to the two other depts and a significant difference was observed in the distribution of Ceriodaphnia dubia, Daphnia laevis, and Leptodiaptomus coloradensis. Though the most abundant zooplankton was recorded in the 3.0 meters deep, Leptodiaptomus coloradesnsis, which was observed in the 6.0 meters deep as the most individual observed, this was followed by Daphnia laevis. Canonical correspondence analysis between physicochemical parameters and the zooplankton indicated a good relationship in the Lake. Ceriodaphnia dubia was found to have a good association with oxygen, sodium, and potassium, while Daphnia laevis and Leptodiaptomus coloradensis are in good relationship with magnesium and phosphorus. It was generally observed that this depth does not have much influence on the distribution of zooplankton in Wushishi Lake.

Keywords: zooplankton, standard procedures, canonical correspondence analysis, Wushishi, canonical, physicochemical parameter

Procedia PDF Downloads 83
178 The Effects of Covid-19 on Oral Health among 19 to 29 Years Old - A Cross-sectional Study in Albania

Authors: Mimoza Canga, Alketa Qafmolla, Vergjini Mulo, Irene Malagnino

Abstract:

Aim: Assessment of oral health in young people aged 18-29 years after the Covid-19 pandemic in Albania. Materials and methods: The present study was conducted at the University of Medicine in Tirana, Albania, from March 2023 to September 2023. This is s cross-sectional study. In our research, 104 students participated, of which 64 were females (61.5%) and 40 were males (38.5%). In the present survey, the participants were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. Majority of the sample (69%) were 18-20 years. Participants were instructed to complete the questionnaire. The study had no dropouts. The current study was conducted in accordance to Helsinki declaration. Statistical analysis was performed using IBM SPSS Statistics Version 23.0, Microsoft Windows Linux, Chicago, IL, USA. Data were analyzed using analysis of variance (ANOVA). P ≤ 0.05 was considered statistically significant. Results: This study reported that 80 (76.9%) of the participants had passed Covid-19, while 24 (23.1%) of them had not passed Covid-19. Based on our data analysis, 70 (67.3%) of the participants had symptoms such as of fever 38°C- 40.5°C and headache. They stated that were treated with Azithromycin 500 mg tablets, Augmentin 625 mg tablets, Vitamin C 1000 mg, Magnesium, and Vitamin D. 40(38.4%) of the participants noticed hypersensitivity in gums (p = 0.004) and sensitive teeth (p = 0.001) after having passed Covid-19 compared to pre-pandemic. Nearly 40 (38.4%) of the participants who passed Covid-19 were treated with painful relievers for the gums and teeth, such as ibuprofen (Advil), used Sensodyne Toothpaste for sensitive teeth and Clove oil. Conclusion: Within the limitations of this study conducted in Albania, can concluded that Covid-19 has a direct impact on oral health.

Keywords: albania, Covid19, cross-sectional study, oral health

Procedia PDF Downloads 83
177 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 276
176 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics

Authors: Bhupinder Kaur, P. P. Srivastav

Abstract:

The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.

Keywords: cryogenic grinding, morphological, mineral composition, SEM

Procedia PDF Downloads 229
175 Hybrid Recovery of Copper and Silver from Photovoltaic Ribbon and Ag finger of End-Of-Life Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500°C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from photovoltaic ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel

Procedia PDF Downloads 127
174 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

Authors: A. Driouiche, S. Mohareb, A. Hadfi

Abstract:

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Keywords: Agadir, irrigation, scaling water, wastewater

Procedia PDF Downloads 116
173 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: apatite, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 121
172 Dietary Habit and Anthropometric Status in Hypertensive Patients Compared to Normotensive Participants in the North of Iran

Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahbobeh Gholipour

Abstract:

Hypertension is one of the important reasons of morbidity and mortality in countries, including Iran. It has been shown that hypertension is a consequence of the interaction of genetics and environment. Nutrients have important roles in the controlling of blood pressure. We assessed dietary habit and anthropometric status in patients with hypertension in the north of Iran, and that have special dietary habit and according to their culture. This study was conducted on 127 patients with newly recognized hypertension and the 120 normotensive participants. Anthropometric status was measured and demographic characteristics, and medical condition were collected by valid questionnaires and dietary habit assessment was assessed with 3-day food recall (two weekdays and one weekend). The mean age of participants was 58 ± 6.7 years. The mean level of energy intake, saturated fat, vitamin D, potassium, zinc, dietary fiber, vitamin C, calcium, phosphorus, copper and magnesium was significantly lower in the hypertensive group compared to the control (p < 0.05). After adjusting for energy intake, positive association was observe between hypertension and some dietary nutrients including; Cholesterol [OR: 1.1, P: 0.001, B: 0.06], fiber [OR: 1.6, P: 0.001, B: 1.8], vitamin D [OR: 2.6, P: 0.006, B: 0.9] and zinc [OR: 1.4, P: 0.006, B: 0.3] intake. Logistic regression analysis showed that there was not significant association between hypertension, weight and waist circumference. In our study, the mean intake of some nutrients was lower in the hypertensive individuals compared to the normotensive individual. Health training about suitable dietary habits and easier access to vitamin D supplementation in patients with hypertension are cost-effective tools to improve outcomes in Iran.

Keywords: hypertension, north of Iran, dietary intake, weight

Procedia PDF Downloads 175
171 Physicochemical Properties of Low Viscosity Banana Juice

Authors: Victor Vicent, Oscar Kibazohi

Abstract:

Banana (Musa acuminata) is one of the most largely consumed fruits in the world. It is an excellent source of potassium, antioxidants, and fiber. In East and Central African countries, banana is used to produce low viscosity clear juice using traditional kneading of ripe banana and grasses until juice oozes out. Recently, an improved method involving blending of the banana followed by pressing to separate the juice from pulp has been achieved. This study assessed the physicochemical properties of banana juice prior to product formulation. Two different banana juices from two cultivars: Pisang awak and Mbile an East African Highland Banana (EAHB) were evaluated for viscosity, sugars (sucrose, fructose, and glucose), organic acids (malic, citric and succinic acids) and minerals using the HPLC and AAS. Juice extracted from Pisang awak had a viscosity of 3.43 × 10⁻⁵ N.m⁻² s while EAHB juice had a viscosity of 6.02 × 10⁻⁵ N.m⁻² s. Sugar concentrations varied with banana place of origin. Pisang awak juice had a higher dissolved solids value of 24-28ᵒ Brix then EAHB, whose value was 18-24ᵒ Brix. Juice viscosity was 3.5–5.3 mPa.s, specific gravity was 1.0-1.1, and pH was 4.3-4.8. The average concentration of sucrose, fructose, and glucose was 1.10 g/L, 70 g/L 70 g/l, respectively for Pisang awak from lower altitude compared to 45-200 g/L 45-120 g/l and 45-120 g/L, respectively for Pisang awak from higher altitude. On the other hand, EAHB from North East Tanzania produced juice corresponding concentrations of 45 g/L, 56 g/L, and 55 g/L, respectively while another EAHB from North West of Tanzania had sucrose and fructose and glucose concentration of 155 g/L and 145 g/L. respectively. Dominant acids were malic and citric acids for pisang awak but succinic for EAHB. Dominant minerals in all cultivars were potassium 2.7-3.1 g/L followed by magnesium 0.6-2 g/L.

Keywords: banana juice, sugar content, acids, minerals, quality analysis

Procedia PDF Downloads 141
170 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser

Procedia PDF Downloads 346
169 Impact of Environmental Changes on Blood Parameters in the Pelophylax ridibundus

Authors: Murat Tosunoglu, Cigdem Gul, Nurcihan Hacioglu, Nurdan Tepeova

Abstract:

Amphibian and Reptilian species are influenced by pollution and habitat destruction. Blood parameters of Amphibia species were particularly affected by the negative environmental conditions. Studied frog samples 36 clinically normal Pelophylax ridibundus individuals were captured along the Biga Stream between April–June 2014. When comparing our findings with the Turkish legislation (Water pollution control regulation), the 1. Locality of the Biga stream in terms of total coliform classified as "high quality water" (Coliform: 866.66 MPN/100 mL), while the 2. locality was a "contaminated water" (Coliform: 53266.66 MPN/100 mL). Blood samples of the live specimens were obtained in the laboratory within one day of their capture. The blood samples were taken from the etherized frogs by means of ventriculus punctures, via heparinized hematocrit capillaries. Hematological and biochemical analyses based on high quality water and contaminated water, respectively, are as follows: Red blood cell count (444210.52-426846.15 per cubic millimeter of blood), white blood cell count (4215.78-4684.61 per cubic millimeter of blood), hematocrit value (29.25-29.43 %), hemoglobin concentration (7.76-7.22 g/dl), mean corpuscular volume (637.64-719.99 fl), mean corpuscular hemoglobin (184.78-174.75 pg), mean corpuscular hemoglobin concentration (29.44-24.82 %), glucose (103.74-124.13 mg/dl), urea (87.68-81.72 mg/L), cholesterol (148.20-197.39 mg/dl), creatinine (0.29-0.28 mg/dl), uric acid (10.26-7.55 mg/L), albumin (1.13-1.39 g/dl), calcium (11.45-9.70 mg/dl), triglyceride (135.23-155.85 mg/dl), total protein (4.26-3.73 g/dl), phosphorus (6.83-17.86 mg/dl), and magnesium (0.95-1.06 mg/dl). The some hematological parameters in P. ridibundus specimens are given for the first time in this study. No water quality dependent variation was observed in clinic hematology parameters measured.

Keywords: Pelophylax ridibundus, hematological parameters, biochemistry, freshwater quality

Procedia PDF Downloads 366
168 The Development of a Nanofiber Membrane for Outdoor and Activity Related Purposes

Authors: Roman Knizek, Denisa Knizkova

Abstract:

This paper describes the development of a nanofiber membrane for sport and outdoor use at the Technical University of Liberec (TUL) and the following cooperation with a private Czech company which launched this product onto the market. For making this membrane, Polyurethan was electrospun on the Nanospider spinning machine, and a wire string electrode was used. The created nanofiber membrane with a nanofiber diameter of 150 nm was subsequently hydrophobisied using a low vacuum plasma and Fluorocarbon monomer C6 type. After this hydrophobic treatment, the nanofiber membrane contact angle was higher than 125o, and its oleophobicity was 6. The last step was a lamination of this nanofiber membrane with a woven or knitted fabric to create a 3-layer laminate. Gravure printing technology and polyurethane hot-melt adhesive were used. The gravure roller has a mesh of 17. The resulting 3-layer laminate has a water vapor permeability Ret of 1.6 [Pa.m2.W-1] (– measured in compliance with ISO 11092), it is 100% windproof (– measured in compliance with ISO 9237), and the water column is above 10 000 mm (– measured in compliance with ISO 20811). This nanofiber membrane which was developed in the laboratories of the Technical University of Liberec was then produced industrially by a private company. A low vacuum plasma line and a lamination line were needed for industrial production, and the process had to be fine-tuned to achieve the same parameters as those achieved in the TUL laboratories. The result of this work is a newly developed nanofiber membrane which offers much better properties, especially water vapor permeability, than other competitive membranes. It is an example of product development and the consequent fine-tuning for industrial production; it is also an example of the cooperation between a Czech state university and a private company.

Keywords: nanofiber membrane, start-up, state university, private company, product

Procedia PDF Downloads 130
167 Management of Nutritional Strategies in Controlling of Autism in Children

Authors: Maryam Ghavam Sadri, Kimia Moiniafshari

Abstract:

Objectives: The prevalence of Autism in the world has taken on a growing trend. Autism is a neuro-developmental disorder that is identified at the age of three. Studies have been shown that nutritional management can control nutritional deficiencies in Autism. This review study aimed to assess the role of nutritional management strategies for Autism in children has been made. Methods: This review study was accomplished by using the keywords related to the topic, 68 articles were found (2000-2015) and finally 15 articles with criteria such as including dietary pattern, nutritional deficiencies and Autism controlling were selected. Results: The studies showed that intake of vitamins D, E, and calcium because of restricted diet (casein and gluten free) in autistic children is less than typically developing children (TYP) (p value ≤ 0.001) and as a result of restrictions on the consumption of fresh fruits and vegetables, vitamin C and magnesium intake is less than TYP children (p value ≤ 0.001). Autistic children also get omega-3 less than TYP children. Studies have shown that food sources rich in omega-3 can improve behavioral indicators, especially in reducing hyperactivity (95% CI = -2.2 - 5.2). Zinc deficiency in these children leads to a high serum level of mercury, lead and cadmium. As a result of the repetitive dietary pattern, Sodium intake in autistic children is more than TYP children (p value < 0.001).Because of low food variety in autistic children, healthy eating index (HEI) is less than TYP children (p value = 0.008).Food selectivity in Autism due to repetitive and restricted dietary pattern and nutritional deficiencies. Conclusion: Because of restricted (casein and gluten free) and repetitive dietary pattern, the intake of some micronutrients are denied in autistic children. The nutritional strategy programs appear to help controlling of Autism.

Keywords: autism, food selectivity, nutrient intake, nutritional strategies

Procedia PDF Downloads 423
166 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: automobiles, welding, corrosion, lap joints, Micro XRD

Procedia PDF Downloads 120
165 An In-Situ Integrated Micromachining System for Intricate Micro-Parts Machining

Authors: Shun-Tong Chen, Wei-Ping Huang, Hong-Ye Yang, Ming-Chieh Yeh, Chih-Wei Du

Abstract:

This study presents a novel versatile high-precision integrated micromachining system that combines contact and non-contact micromachining techniques to machine intricate micro-parts precisely. Two broad methods of micro fabrication-1) volume additive (micro co-deposition), and 2) volume subtractive (nanometric flycutting, ultrafine w-EDM (wire Electrical Discharge Machining), and micro honing) - are integrated in the developed micromachining system, and their effectiveness is verified. A multidirectional headstock that supports various machining orientations is designed to evaluate the feasibility of multifunctional micromachining. An exchangeable working-tank that allows for various machining mechanisms is also incorporated into the system. Hence, the micro tool and workpiece need not be unloaded or repositioned until all the planned tasks have been completed. By using the designed servo rotary mechanism, a nanometric flycutting approach with a concentric rotary accuracy of 5-nm is constructed and utilized with the system to machine a diffraction-grating element with a nano-metric scale V-groove array. To improve the wear resistance of the micro tool, the micro co-deposition function is used to provide a micro-abrasive coating by an electrochemical method. The construction of ultrafine w-EDM facilitates the fabrication of micro slots with a width of less than 20-µm on a hardened tool. The hardened tool can thus be employed as a micro honing-tool to hone a micro hole with an internal diameter of 200 µm on SKD-11 molded steel. Experimental results prove that intricate micro-parts can be in-situ manufactured with high-precision by the developed integrated micromachining system.

Keywords: integrated micromachining system, in-situ micromachining, nanometric flycutting, ultrafine w-EDM, micro honing

Procedia PDF Downloads 405
164 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 225
163 Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction

Authors: Monique Joyce L. Disamburum, Nicole C. Faustino, Ashley Angela A. Fazon, Jessie F. Rubonal

Abstract:

Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys.

Keywords: sphagnum moss, Jeepney filter, smoke density, Jeepney emission

Procedia PDF Downloads 44
162 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique

Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.

Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method

Procedia PDF Downloads 175
161 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo

Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi

Abstract:

The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.

Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals

Procedia PDF Downloads 102
160 Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor

Authors: Hamed Rahmati

Abstract:

Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system.

Keywords: critical temperature, cryogenic system, high-temperature superconductors, YBCO

Procedia PDF Downloads 143
159 Geophysical and Laboratory Evaluation of Aquifer Position, Aquifer Protective Capacity and Groundwater Quality in Selected Dumpsites in Calabar Municipal Local Government Area, South Eastern Nigeria

Authors: Egor Atan Obeten, Abong Augustine Agwul, Bissong A. Samson

Abstract:

The position of the aquifer, its protective capability, and the quality of the groundwater beneath the dumpsite were all investigated. The techniques employed were laboratory, tritium tagging, electrical resistivity tomography (ERT), and vertical electrical sounding (VES). With a maximum electrode spacing of 500 meters, fifteen VES stations were used, and IPI2win software was used to analyze the data collected. The resistivity map of the dumpsite was determined by deploying six ERT stations for the 2 D survey. To ascertain the degree of soil infiltration beneath the dumpsite, the tritium tagging method was used. Using a conventional laboratory procedure, groundwater samples were taken from neighboring boreholes and examined. The findings showed that there were three to five geoelectric layers, with the aquifer position being inferred to be between 24.2 and 75.1 meters deep in the third, fourth, and fifth levels. Siemens with values in the range of 0.0235 to 0.1908 for the load protection capacity were deemed to be, at most, weakly and badly protected. The obtained porosity values ranged from 44.45 to 89.75. Strong calculated values for transmissivity and porosity indicate a permeable aquifer system with considerable storativity. The area has an infiltration value between 8 and 22 percent, according to the results of the tritium tagging technique, which was used to evaluate the level of infiltration from the dumpsite. Groundwater samples that have been analyzed reveal levels of NO2, DO, Pb2+, magnesium, and cadmium that are higher than what the NSDWQ has approved. Overall analysis of the results from the above-described methodologies shows that the study area's aquifer system is porous and that contaminants will circulate through it quickly if they are contaminated.

Keywords: aquifer, transmissivity, dumpsite, groundwater

Procedia PDF Downloads 38
158 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique

Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.

Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization

Procedia PDF Downloads 68
157 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 131
156 Evaluation of Efficiency of Naturally Available Disinfectants and Filter Media in Conventional Gravity Filters

Authors: Abhinav Mane, Kedar Karvande, Shubham Patel, Abhayraj Lodha

Abstract:

Gravity filters are one of the most commonly used, economically viable and moderately efficient water purification systems. Their efficiency is mainly based on the type of filter media installed and its location within the filter mass. Several researchers provide valuable input in decision of the type of filter media. However, the choice is mainly restricted to the chemical combinations of different substances. This makes it very much dependent on the factory made filter media, and no cheap alternatives could be found and used. This paper presents the use of disinfectants and filter medias either available naturally or could be prepared using natural resources in conventional mechanism of gravity filter. A small scale laboratory investigation was made with variation in filter media thickness and its location from the top surface of the filter. A rigid steel frame based custom fabricated test setup was used to facilitate placement of filter media at different height within the filter mass. Finely grinded sun dried Neem (Azadirachta indica) extracts and porous burnt clay pads were used as two distinct filter media and placed in isolation as well as in combination with each other. Ground water available in Marathwada region of Maharashtra, India which mainly consists of harmful materials like Arsenic, Chlorides, Iron, Magnesium and Manganese, etc. was treated in the filters fabricated in the present study. The evaluation was made mainly in terms of the input/output water quality assessment through laboratory tests. The present paper should give a cheap and eco-friendly solution to prepare gravity filter at the merit of household skills and availability.

Keywords: fliter media, gravity filters, natural disinfectants, porous clay pads

Procedia PDF Downloads 250
155 Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers.

Keywords: entropy water quality index (EWQI), moran’s i, ordinary kriging interpolation, el milia plain

Procedia PDF Downloads 50
154 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 320
153 Inadequate Intake of Energy and Nutrients: A Comparative Cross-Sectional Study Between Sport and Non-sport Science University Students of Southern Ethiopia

Authors: Beruk Berhanu Desalegn, Kebede Awgechew, Addisalem Mesfin

Abstract:

Introduction: This study aimed to investigate and compare the energy and selected nutrient intakes of sport science and non-sport science University students of Southern Ethiopia. Method: Multiple-day dietary data were collected from 166 university students (76 sport science and 90 non-sport sciences). Average daily energy and nutrient intake, and inadequate intakes were calculated using NutriSurvey (NS). Results: There were significant differences (p < 0.05) in the median intakes of energy, total carbohydrate, and vitamin B1 between female students from the sport science and non-sport science groups, but only the median intake of iron was significantly different (p < 0.05) between the male sport and non-sport science students’ group. The prevalence of inadequate intake of vitamin B1 were significantly (p<0.05) higher in the male and female from the non-sport science groups compared to the male and female students’ groups in the sport science, respectively. Whereas, the prevalence of inadequate iron intake by the male sport science students’ group was significantly (p<0.05) higher compared to their counterparts. Similarly, the prevalence of inadequate energy among the females from the sport science group was significantly (p<0.05) higher compared to the female students from the non-sport science department group. The prevalence of inadequate intakes of dietary energy, and the majority of the nutrients (protein, fat, vitamin A, B1, B2, and magnesium) were high (>50%) in selected University students. Conclusion: The energy and majority of nutrient intakes by the students in the selected universities of southern Ethiopia were sub-optimal. Therefore, activities that will improve the dietary intake of University students should include weekly meal plan revision considering their average recommended nutrient intake (RNI).

Keywords: dietary intake, sport science, University students, Ethiopia

Procedia PDF Downloads 76
152 Drying Effect on the Proximate Composition and Functional Properties of Cocoyam Flour

Authors: K. Maliki, A. Ajayi, O. M. Makanjuola, O. J. Adebowale

Abstract:

Cocoyam is herbaceous perennial plant which belongs to the family Araceae and genus xanthosoma or cococasia is mostly cultivated as food crop. It is very rich in Vitamin B6, Magnesium and also in dietary fiber. Matured cocoyam is eaten boiled, Fried or roasted in Nigeria. It can also be dried and used to make flour. Food drying is a method of food preservation in which food is dried, thus inhibit the growth of bacteria yeast and mold through the removal of water. Drying effect on the proximate composition and functional properties of cocoyam flour were investigated. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, sliced into 0.3mm thickness blanch in boiling water at 100°C for 15 minutes and dried using sun drying oven and cabinet dryers. The blanched slices were divided into three lots and were subjected to different drying methods. The dried cocoyam slices were milled into flour using Apex mill and packed into Low Density Polyethylene Film (LDPE) 75 Micron 4 thickness and kept for four months under ambient temperature before analysis. The results showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 7.35% to 13.89%, 1.45% to 3.3%, 1.2% to 3.41%, 2.1% to 3.1%, 6.30% to 9.1% and 66% to 82% respectively. The functional properties of the cocoyam flour ranged from 1. 65ml/g to 4.24ml/g water absorption capacity, 0.85ml/g to 2.11ml/g oil absorption capacity 0.56ml/g and 0.78ml/g bulk density and 4.91% to 6.80% swelling capacity. The result showed that there was not significant difference (P ≥ 0.5) across the various drying methods used. Cabinet drying method was found to have the best quality characteristic values than the other drying methods. In conclusion, drying of cocoyam could be used for value addition and provide extension to shelf-life.

Keywords: cocoyam flour, drying, cabinet dryer, oven dryer

Procedia PDF Downloads 237
151 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 388
150 Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour

Authors: Adebola Ajayi, Francis B. Aiyeleye, Olakunke M. Makanjuola, Olalekan J. Adebowale

Abstract:

Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour.

Keywords: cocoyam, extraction, oven dryer, cabinet dryer

Procedia PDF Downloads 288